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• Top quark couples strongly to the Higgs sector and a good probe of new physics.

• The top mass is the dominant source of theoretical uncertainty in EWPOs.
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Abstract

We consider the top-mass dependence of t and t̄ jets produced at large energy. The production
process is characterized by three well separated scales: the center-of-mass energy, Q, the top mass,
m, the top-decay width, Γ, and also ΛQCD; scales which can be disentangled with effective theory
methods. A factorization theorem for the invariant mass line-shape of the top and anti-top jets
splits the process into t and t̄ jets, plus soft hadrons between the jets. We characterize all the large
logs for Q " m " Γ >∼ ΛQCD and demonstrate that the renormalization group ties together the
jet and soft interactions even below the scale mt. Furthermore, it does so in a manner that ensures
the summation of large logs affects only the normalization, and not the invariant mass spectrum.
Full NLL results for the cross-section are presented. Studying the mt dependence we demonstrate
that it is possible to measure a short distance mass parameter using jets with precision better than
ΛQCD.
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• Good reasons to measure the top mass with high 
precision.
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Figure 1: The predictions for MW and sin2 θeff in the SM and the MSSM (SPS1b). The
inner (blue) areas correspond to δmt = 0.1 GeV (LC), while the outer (green) areas arise
from δmt = 2 GeV (LHC). The anticipated experimental errors on MW and sin2 θeff at the
LHC/LC and at a LC with GigaZ option are indicated.

for mt̃1 , mt̃2 , mb̃1
, mb̃2

around their values given by SPS1b. The mixing angles in the t̃ and

b̃ sectors have been left unconstrained. The mass of the CP-odd Higgs boson MA is assumed
to be determined to about 10%, and it is assumed that tanβ ≈ 30± 4.5, where tan β is the
ratio of the vacuum expectation values of the two Higgs doublets of the MSSM.

The figure shows that the improvement in δmt from δmt = 2 GeV to δmt = 0.1 GeV
strongly reduces the parametric uncertainty in the prediction for the EWPO. In the SM
case it leads to a reduction by about a factor of 10 in the allowed parameter space of the
MW − sin2 θeff plane. In the MSSM case, where many additional parametric uncertainties
enter, a reduction by a factor of more than 2 is obtained in this example. This precision will
be crucial to establish effects of new physics via EWPO.

2.2 Indirect determination of the SM top Yukawa coupling

A high precision on mt is also important to obtain indirect constraints on the top Yukawa
coupling yt from EWPO [21]. The top Yukawa coupling enters the SM prediction of EWPO
starting at O(ααt) [27]. Indirect bounds on this coupling can be obtained if one assumes
that the usual relation between the Yukawa coupling and the top quark mass, yt =

√
2mt/v

(where v is the vacuum expectation value), is modified.
Assuming a precision of δmt = 2 GeV, an indirect determination of yt with an accuracy
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•Typically the uncertainty in the extracted Higgs mass 
will be limited by the uncertainty in the top mass.

Predictions for the W mass and 
Weinberg Angle in the SM & MSSM

Motivation 



What are we Measuring?

•What is the top mass?

High Precision Top Mass

Threshold Scan:
√

s " 350 GeV (Phase I)

! count number of tt̄ events

! color singlet state

! background is non-resonant

! physics quite well understood

(renormalons, summations)

→ δmexp
t " 50 MeV

→ δmth
t " 100 MeV

(param. est. → many authors)

What mass?
√

srise ∼ 2mthr
t + pert.series

(short distance mass: 1S↔ MS)

Reconstruction: any
√

s (Phase I + II)

Chekanov,Morgunov:

! e+e− → 6 jets (y6
cut)

! b-tagging

! #P1 + #P2 < ∆p

! M1 + M2 < ∆M

k!!t

q2!mt
2 top ?

top ?

→ δmex,stat
t " 100 MeV

( L = 300 fb−1)

What mass?

Pole Mass ?

ambiguity: ∆mt ∼ ΛQCD

There is s.th. to understand here !

∆mt ∼ αs(Γt) Γt

LCWS 05, Stanford, March 18-22 2005 A. H. Hoang – p.8

•Which top mass?

•Experimental 

 Electrowea$ 
Symmetry
Top mass measuremen!

Made the world’s most precise measurement. The 

precision in the combined CDF and D0 top mass 

measurement has reached 2.1 GeV (or 1.2 %). 

The measured value is: 171.4 GeV

W mass measuremen!

The world’s single most-precise measurement with 

48 MeV uncertainty.

The measured value is: 80.413 GeV

The world’s average is now: 80.398 GeV

Light"mass Hi#s preferred !

The precise determination of the top and W mass 

values are used to predict the Higgs mass. 

The good news for Tevatron program is that, as 

the top mass has moved low and the W mass 

high, a Higgs with lighter mass is preferred. This is 

the mass region best suited for our experiments.

! 3

Current Top Mass 
Mesurements

• Top is a colored parton.  Cannot define physical on-shell mass. 
• Top mass is a parameter of the Lagrangian.
• Top mass parameter is scheme dependent.

renormalon ambiguity, poor perturbative behavior. •Pole mass? : 

What mass is it? m = 171.4± 1.2 (stat) ±1.8 (syst) GeV

pole mass?•
! ambiguity

Ringberg Workshop on  QCD of Jets, January 8-10 2007André H. Hoang  - 16

Reconstruction at LHC and ILC

ATLAS (l+jets)

~

~

δm ∼ ΛQCD ,  linear

sensitivity to IR momenta

! poor behavior of         expansionαs

! not used anymore for mb,mc
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The functions ωi(s) entering ωi
T,L(s) contain all the de-

pendence on
√

s, which cancels in the q2 spectrum. All
ln(µ/mb) terms that usually appear in the functions
ω77,79

i (s) have been moved into C7 (along with the ap-
propriate constant term contained in mb/m1S

b ).

The χj
i (s) containing the O(1/m2

b) corrections in
Eq. (13) can be extracted from Ref. [24]:

χ99
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APPENDIX B: NUMERICAL INPUTS

In this Appendix we collect all of our numerical inputs.
All values are taken from Ref. [38] except where stated
otherwise. To evaluate the Wilson coefficients we use

mW = 80.403 GeV ,

sin2 θW = 0.23122 ,

mpole
t = (171.4± 2.1)GeV ,

αs(mZ) = 0.1176 ,

µc
0 = 80 GeV ,

µt
0 = 120 GeV . (B1)

µ = 2.35 GeV µ = 4.7 GeV µ = 9.4 GeV

αs(µ) 0.2659 0.2140 0.1793

C1(µ) −0.4642 −0.2880 −0.1506

C2(µ) 1.019 1.007 1.001

C3(µ) −0.0096 −0.0043 −0.0017

C4(µ) −0.1247 −0.0795 −0.0508

C5(µ) 0.00069 0.00029 0.00009

C6(µ) 0.00205 0.00081 0.00026

C8(µ) −0.2012 −0.1778 −0.1598

mb(µ) 4.703 4.120 3.707

C7(µ) −0.3637 −0.3293 −0.2982

C7 −0.2435 −0.2611 −0.2687

C9(µ) 4.504 4.209 3.790

C9 4.258 4.207 4.188

C10 −4.175 −4.175 −4.175

TABLE I: Values of the Wilson coefficients to O(αs) at dif-
ferent low scales µ.

Here, µc,t
0 are the matching scales in the charm and top

sector, respectively, and we use the same values as in
Ref. [19]. For the top-quark mass we use the newest CDF
and D0 average [43]. The resulting values for the Wilson
coefficients at O(αs) run down to the low scale and the
corresponding values for the Ci according to Eq. (A2) are
listed in Table I. Note that the residual scale uncertainties
of C7 and especially C9 are much smaller than those of
C7,9(µ). We use a Mathematica code by Bobeth with
the initial conditions and renormalization group running
as given in Refs. [19, 20]. For C9(µ) this requires the
three-loop mixings calculated in Refs. [44].

In the decay rates we use

αem(mb) = 1/133 ,

|VtbV
∗
ts| = 41.09 × 10−3 ,

mB = 5.279 GeV ,

τB = 1.584 ps ,

mK∗ = 0.892 GeV ,

mb ≡ m1S
b = (4.70 ± 0.04)GeV ,e.g.

δm ∼ αs(Γ)Γ

mass?•

quark masses are Lagrangian parameters, use a suitable scheme

MS No

mpole −mMS(m) ∼ 8 GeV

Top Quark Physics at LHC, Bad Honnef , January 26-27 

2007
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Remarks on Quark Masses

top

some schemes are more
appropriate than others

•Which mass are the experimentalists measuring?

•For better precision we need a short distance top mass.

•How can we extract a short distance mass? Which mass?



•What is a suitable top mass observable? 
•Clear and well defined relation to a short distance mass.
•Good signal to background ratio.

Observables

Threshold Scan

Jet Reconstruction

•Physics well understood 
•NRQCD is the appropriate EFT.
•Well defined relation to short distance mass.
•Backgrounds well understood.

δmth
t ∼ 100MeV (Hoang, Manohar, Stewart, Teubner,...)

! !

Top Mass reconstructionTop Mass reconstruction 

•Many open theoretical & experimental  questions 
•Relation to short distance mass.
•Backgrounds,...



Jet Reconstruction Issues

•Suitable jet observable with clear relation to a short distance mass.

• Final state soft radiation.

•Initial state soft radiation.

•Initial state PDFs.

•Jet Energy Scale.

•Beam Remnants.

•Underlying Events.

•....

Issues common to
the ILC & LHC



Pair Production of Top Jets 

e+e− → tt̄ pp→ tt̄X

LC LHC

Focus of this talk



Jet Observable Sensitive to Top Mass
e-

e+

t

t-

γ,Z•Focus on the dijet region where the top and antitop 
jets have invariant masses close to the top mass.

•The jet observable of interest is the double differential jet invariant mass 
distribution:

top quark mass measurements in the upcoming experiments such a framework is imperative.

A top mass determination method where a systematic analytic framework exists and

where the relation between the Lagrangian top mass parameter m and the measured top

mass can be established to high precision is the threshold scan of the line-shape of the

total hadronic cross section in the top-antitop threshold region, Q ≈ 2m, at a future Linear

Collider [8, 9], where Q is the c.m. energy. In this case the system of interest is a top-

antitop quark pair in a color singlet state and the observable is related to a comparatively

simple counting measurement. The line-shape of the cross section rises near a center of

mass energy that is related to a toponium-like top-antitop bound state with a mass that can

be computed perturbatively to very high precision [10, 11, 12, 13, 14] using non-relativistic

QCD (NRQCD) [15, 16] an effective theory (EFT) for nonrelativistic heavy quark pairs. The

short lifetime of the top quark, τ = 1/Γ ≈ (1.5 GeV)−1, provides an infrared cutoff for all

kinematic scales governing the top-antitop dynamics and leads to a strong power suppression

of non-perturbative QCD effects. Experimental studies concluded that theoretical as well as

experimental systematic uncertainties for this method are at a level of only 100 MeV [17, 18].

The most suitable top quark mass schemes are the so-called threshold masses [12], which

can be related accurately to other short-distance mass schemes such as the running MS

mass. Unfortunately, the threshold scan method cannot be used at the LHC because the

top-antitop invariant mass cannot be determined with sufficient accuracy.

In this work we use EFT’s to provide, for the first time, an analytic framework that can

be applied to systematically describe the perturbative and nonperturbative aspects of top

quark invariant mass distributions obtained from reconstruction. As a first step towards

developing a detailed framework for the LHC, we focus in this work on jets in a e+e−

Linear Collider environment at c.m. energies far above threshold Q ∼ 0.5−1 TeV. For e+e−

collisions strong interaction effects arising from the initial state can be neglected and there

is no need to identify or remove any ‘beam remnant’ or underlying events. Also, in the e+e−

framework it is easier to formulate shape variables like thrust that control the jet-likeness

and the soft dynamics of an event. We consider the double differential top and antitop

invariant mass distribution, where each of the invariant masses, M2
t and M2

t̄ , are defined

from all particles in each of the two hemispheres that are determined by the events thrust

axis. In Fig. 1 we show an example of such an event. Other invariant mass definitions,

e.g. based on kT algorithms and criteria to identify jets from top and antitop decay can be

employed as well. Our approach also works for all-jet and lepton plus jet final states. Our

focus is to study the double differential invariant mass distribution in the peak region close

to the top mass, so that M2
t −m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is theoretically convenient

to introduce the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ % m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.
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QCD

SCET

HQET
      Soft

Cross-Talk

top

Q

mt

!t

Integrate out 

Hard Modes

Factorize Jets, Integrate 

 out energetic collinear 

 gluons

Evolution and 

decay of top 

close to mass shell

t t

HQET
antitop

n n

FIG. 2: Sequence of effective field theories used to compute the top/antitop invariant mass distri-
bution in the peak region.

order m, ŝt,t̄ ∼ m. Thus to describe invariant masses in the peak region ŝt,t̄ ∼ Γ the top

and antitop jets are finally computed in Heavy-Quark Effective Theory (HQET) [24] which

represents an expansion in Γ/m ∼ 0.01. We have in fact two copies of HQET, one for the

top and one for the antitop, plus soft interactions between them. In these EFT’s the top

decay can be treated as inclusive and is therefore described by the total top width term Γ

that acts as an imaginary residual mass term [9, 25]. Since HQET is usually understood

as being formulated close to the rest frame of the heavy quark without the external soft

interactions, we refer to these two EFT’s as boosted HQET’s (bHQET’s).1

At leading order in the expansion in m/Q and Γ/m we show that the double differential

invariant hemisphere mass distribution can be factorized in the form
(

dσ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µQ, µm)Hm

(

m,
Q

m
, µm, µ

)

(3)

×
∫

d"+d"−B+

(

ŝt −
Q"+

m
, Γ, µ

)

B−

(

ŝt̄ −
Q"−

m
, Γ, µ

)

Shemi("
+, "−, µ) ,

where ŝt and ŝt̄ are defined in terms of M2
t,t̄ in Eq. (1). The term σ0 is a normalization factor,

and the factors HQ and Hm are matching corrections that are derived from matching and

running in SCET and the bHQET’s, respectively. HQ and Hm are independent of ŝt and ŝt̄

and do not affect the form of the invariant mass distributions. The jet functions B± describe

the QCD dynamics of collinear radiation in the top/antitop direction, and the decay of the

top and antitop quarks near mass shell within the top/antitop jets. They can be computed

perturbatively at the scale µ ∼ Γ since the top width Γ provides an infrared cutoff from

1 We adopt the acronym bHQET in cases where we wish to remind the reader that the residual momentum

components of the heavy quark in the e+e− c.m. frame are not homogeneous, and that additional gluon

interactions occur which are not simply the soft gluons of standard HQET.
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• The top and antitop jets are defined to have the 
invariant masses:

Using the same steps as above for ρ, the factorization theorem for top initiated jets is

dσ

dρ
= σH

0 (µ)

∫ ∞

−∞

dst dst̄ B̃+

( st

mJ
, Γ, µ

)

B̃−

( st̄

mJ
, Γ, µ

)

SHJM(ρ − m2
J

Q2
, st, st̄) , (108)

where the relevant soft-function is

SHJM(ρ, st, st̄) =

∫ ∞

0

d#+ d#− δ
(

ρ − 1

Q2
Max

{

Q#++st, Q#−+st̄

}

)

Shemi(#
+, #−, µ) . (109)

Factorization theorems for other event shapes that are related to d2σ/dM2
t dM2

t̄ can be

derived in an analogous manner. As should be obvious from the definitions of thrust and the

heavy jet mass distribution in Eqs. (105) and (108), these event shape distributions are also

characterized by a peak at shape parameter values that are sensitive to the short-distance

top-quark mass. It is therefore possible to use these event shapes to measure the top-mass

with a precision comparable to the invariant mass distribution discussed in the previous

subsection. A brief numerical analysis of the thrust distribution is given in Sec. IVA.

IV. ANALYSIS OF THE INVARIANT MASS DISTRIBUTION

A. A Simple Leading Order Analysis

The main result of this paper is the formula in Eq. (100) for the double invariant mass

distribution with a short distance top-quark mass suitable for measurements using jets.

In this section we discuss the implications of Eq. (100) for top-mass measurements. For

convenience we rewrite the cross-section in terms of dimension one invariant mass variables

d2σ

dMt dMt̄
=

4MtMt̄ σH
0

(mJΓ)2
F (Mt, Mt̄, µ) , (110)

where σH
0 = σ0HQ(Q, µm)H̃m(mJ , Q/mJ , µm, µ) is the cross-section normalization factor

with radiative corrections, Q is the c.m. energy, and we have defined a dimensionless function

F (Mt, Mt̄, µ) = (mJΓ)2

∫ ∞

−∞

d#+ d#−B̃+

(

ŝt −
Q#+

mJ
, Γ, µ

)

B̃−

(

ŝt̄ −
Q#−

mJ
, Γ, µ

)

Shemi(#
+, #−, µ).

(111)

In terms of Mt and Mt̄ the variables

ŝt = 2Mt − 2mJ , ŝt̄ = 2Mt̄ − 2mJ , (112)

up to small Γ/m power corrections. In Eqs. (110-112) the jet hemisphere invariant masses

are Mt and Mt̄ and the short-distance top-quark mass that we wish to measure is mJ . In

d2σ/dMtdMt̄ the function F dominates the spectrum, while 4MtMt̄ σH
0 /(mJΓ)2 acts as a

normalization constant (since MtMt̄ is essentially constant in the peak region of interest). A

40
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ŝt −
Q#+

mJ
, Γ, µ

)

B̃−

(
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are Mt and Mt̄ and the short-distance top-quark mass that we wish to measure is mJ . In
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normalization constant (since MtMt̄ is essentially constant in the peak region of interest). A

40

,

•The jet invariant mass condition is characterized as:



Tree Level Breit Wigner Curves?

• A first guess might be that the distribution is a product of Breit Wigner curves.

d2σ
dst dst̄

∣∣∣
tree level

=

-0.04 -0.02 0.02 0.04

50

100

150

200

• Furthermore large logarithms can affect these curves.

• We will find that this is not always true even at tree level due to nonperturbative 
effects.

-0.04 -0.02 0.02 0.04

50

100

150

200



Relevant Energy Scales 

• Center of mass energy                          

• Top quark mass   m∼ 174GeV

• Top quark width Γ∼ 2GeV

Q∼ 1TeV

• Confinement Scale Λ∼ 500MeV

 Disparate energy scales Effective Field Theory!



Effective Field Theories



Kinematics for Top Jets: I

• High Energy Condition: Top quark pairs are produced with a center of mass 
energy much larger than the top mass

• In this limit one can treat top quarks as collinear degrees of freedom in the 
Soft Collinear Effective Theory (SCET) (Bauer, Fleming, Luke, Pirjol, Stewart).  

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

FIG. 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′ and selected by
b-tagging and W -reconstruction. The plane separating the two hemispheres is perpendicular to
the thrust axis and intersects the thrust axis at the interaction point. The total invariant mass

inside each hemisphere is measured. Our analysis applies equally well to the lepton+jets channel
and dilepton channels (not shown).

Here the top width Γ is setting the scale of the width of the invariant mass distribution and

the shifted variable ŝ ∼ Γ.

There are three relevant disparate scales governing the dynamics of the system,

Q # m # Γ > ΛQCD . (2)

This kinematic situation is characterized by energy deposits contained predominantly in

two back-to-back regions of the detector with opening angles of order m/Q associated to

the energetic jets coming from the top quark decay and collinear radiation. Frequently in

this work we refer to the jets coming from the top and antitop quark collectively as top

and antitop jet, respectively, but we stress that we do not require the jets from the top and

antitop decay products to be unresolved. The region between the top jets is predominantly

populated by soft particles with energies of order of the hadronic scale.

The EFT setup used to describe the dynamics in this kinematic situation is illustrated in

Fig. 2 and represents a sequence of different EFT’s. The use of different EFT’s is mandatory

to separate the various relevant physical fluctuations. The high energy dynamics for the

top quarks at the scale Q # m can be described by quark and gluon degrees of freedom

that are collinear to the top and antitop jet axes, and by soft degrees of freedom that

can freely propagate between the jets. The appropriate EFT for this situation is the Soft-

Collinear Effective Theory (SCET) [19, 20, 21, 22] with a nonzero top quark mass term [23],

which represents an expansion in λ ∼ m/Q ∼ 0.2 − 0.3. The leading order soft-collinear

decoupling [20] properties of SCET allows a factorization of the process into three sectors:

top jet dynamics, antitop jet dynamics, and dynamics of the soft cross talk between the top

and antitop jets, which corresponds quite intuitively to the situation pictured in Fig. 1. In

SCET the typical fluctuation of the jet invariant masses around the top mass are still of
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Kinematics for Top Jets: II

• Invariant Mass Condition: We characterize on shell production  by the 
requirement:

• This condition looks like the invariant mass constraint on a heavy quark in 
Heavy Quark Effective Theory (HQET) (Isgur, Wise,...).

• HQET has been generalized to unstable particles(Beneke, Chapovsky, Signer, 
Zanderighi).

For stable top-antitop production additional jets always result in τ > 0. For unstable top-

quarks the values of τ < 0 also become allowed. Note that for massless jet production the

thrust (T ) distribution is peaked close to T = 1 while for events containing a heavy quark

pair it is peaked close to T =
√

Q2 − 4m2/Q. Thus a cut on thrust can in principle be used

to discriminate between massive and massless quark production [7].

D. Differential Cross-Section with Momentum Decomposition

To insert the invariant mass constraints into our cross-section in Eq.(52) we use the

identity operator:

1 =

∫

d4pn d4pn̄ d4ps δ4(pn − PXn
) δ4(pn̄ − PXn̄

) δ4(ps − PXs
) , (59)

which sets the collinear jet momenta PXn
, PXn̄

, PXs
to pn, pn̄, ps respectively. In section III E

we will use an additional insertion of an identity operator to define the hemisphere invariant

masses, Mt and Mt̄. In this section we carry out manipulations that are common to any

definition of the invariant masses. For now we ensure that the invariant mass of each

hemisphere is close to the top mass by including in the restrictions, “res”, on the states the

fact that Mt, Mt̄ are in the region

− mΓ <∼ M2
t,t̄ − m2 <∼ mΓ. (60)

From here on we assume that in the sense of power counting ∆ ∼ Γ. We now decompose

the collinear and soft momenta into label and residual parts

pn = p̃n + kn, pn̄ = p̃n̄ + kn̄, P⊥
Xn

= K⊥
Xn

, (61)

P⊥
Xn̄

= K⊥
Xn̄

, P−
Xn

= P̃−
Xn

+ K−
Xn

, P+
Xn̄

= P̃+
Xn̄

+ K+
Xn̄

,

P+
Xn

= K+
Xn

, P−
Xn̄

= K−
Xn̄

, P µ
Xs

= Kµ
Xs

, pµ
s = kµ

s .

Note that our choice of #n along the thrust axis together with the restrictions on the states

ensures that the perpendicular momentum of the jets relative to this axis, P⊥
Xn

and P⊥
Xn̄

, are

purely residual. The last result in Eq. (61) indicates that the soft state also has a momentum

that is purely residual. The integrals in Eq.(59) can be decomposed into a sum over labels

and integrals over residual momenta as
∫

d4pn

∫

d4pn̄ =
1

2

∑

p̃n

∫

dk+
n dk−

n d2k⊥
n

1

2

∑

p̃n̄

∫

dk+
n̄ dk−

n̄ d2k⊥
n̄ . (62)

In the total cross-section in Eq. (52) we sum over the directions #n of the thrust axis. To

turn this sum into an integral over the full solid angle, we need to combine it with a residual

solid angle integration for each #n. Therefore, we decompose the residual measure as

d2k⊥
n = |#pn|2 dφ d cos(θr) =

(Q2

4
− p2

n

)

dφ d cos(θr), (63)
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Group Photo of Effective Field Theories

QCD

SCET

HQET
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

I. INTRODUCTION

Outline for this paper.

• Section I. Introduction, discussion of perturbative corrections to be computed, shape

function, Breit-Wigner, matching.

• Section II. Recap of the factorization theorem from the other paper (remove the deriva-

tion from this draft) and of the observable to be treated (only the final one from the

other paper).

• Section III. SCET computations, matching from QCD. Computation of the running.

• Section IV. bHET computations, matching and running. Results in schemes other

than the pole mass scheme.

• Section V. Final resummed cross-section. Results shown for i) tree level, ii) LL (up

to 1/ε in the anom.dim. with tree level matching), iii) one-loop LL, as in ii) but also

including the one-loop matching results in the boundary conditions in case the log

summation and αs corrections are of similar size. This is a hybrid LL-NLO.

• Section VI. Conclusion

An important outstanding theoretical issue is the formulation of a consistent framework

which incorporates finite width effects in the production of massive unstable particles such

as the top quark or the W boson. The issue is a pressing one in the era of the large hadron

collider (LHC) with expectations of a wealth of data where QCD backgrounds involving

top quarks and W bosons must be understood at a precision level in order to tease out

measurements of exotic new physics. For example tt̄ production is a significant background
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The QCD Cross-Section

• The cross-section in QCD has the general form :

• The sum over final states X is restricted to contain a top jet and an anti-top 
jet with invariant masses close to the top mass. 

II. EFFECTIVE FIELD THEORIES

A. Massive SCET
mass-scet

J (0)
n,n̄(ŝ, µ) = 2π

Q

m2
δ(ŝ). (1) treejetscet
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III. FACTORIZATION OF THE TWO-JET CROSS-SECTION

A. The QCD Cross-Section

We start with the general expression of the cross-section for the two jet process e+e− →
γ∗, Z∗ → J1(t)J2(t̄) in QCD:

σ =
res.∑

X

(2π)4 δ4(pe + pē − pX)
∑

ij

L(ij)
µν 〈0|Jµ

i (0)|X〉〈X|J†ν
j (0)|0〉 , (5) qcdcrosssection

where L(ij)
µν is the leptonic tensor. The QCD currents Jµ

i are given by

Jµ
i (x) = ψ̄(x)Γµ

i ψ(x) , (6) QCDcurrents

and the indices i, j run over {γ, Z} corresponding to contributions from photon and Z

boson exchange respectively. The corresponding Dirac structures are Γµ
γ = γµ and Γµ

Z =

4

• The top quark currents are produced by photon and Z exchange:
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i are given by
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4
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III. FACTORIZATION OF THE TWO-JET CROSS-SECTION

A. The QCD Cross-Section

We start with the general expression of the cross-section for the two jet process e+e− →
γ∗, Z∗ → J1(t)J2(t̄) in QCD:

σ =
res.∑

X

(2π)4 δ4(pe + pē − pX)
∑

ij

L(ij)
µν 〈0|Jµ

i (0)|X〉〈X|J†ν
j (0)|0〉 , (5) qcdcrosssection

where L(ij)
µν is the leptonic tensor. The QCD currents Jµ

i are given by

Jµ
i (x) = ψ̄(x)Γµ

i ψ(x) , (6) QCDcurrents

and the indices i, j run over {γ, Z} corresponding to contributions from photon and Z

boson exchange respectively. The corresponding Dirac structures are Γµ
γ = γµ and Γµ

Z =

4

Γµ
Z = gV γµ + gAγµγ5. The superscript res. on the summation symbol denotes an implied

restriction on the sum over final states X. The final states are restricted to contain top and

anti-top jets with invariant masses close to the top quark mass. The explicit form of these

restrictions will depend on the specific jet algorithms and invariant mass definitions used.

In the next three sections we explore three different jet algorithms and we will make the

restriction over final states explicit at this later stage.

Next we integrate out the hard production energy scale Q by matching the QCD currents

onto currents in SCETI giving us a new expression for the cross-section as defined in SCETI.

B. The SCET Cross-Section

The matching of the QCD currents onto SCETI is given by the convolution

Jµ
i (0) =

∫
dω dω̄ C(ω, ω̄, µ)J µ

i (ω, ω̄, µ) (7) currentmatch

where the SCETI current at leading order in the expansion parameter m/Q is given by

J µ
i (ω, ω̄, µ) = χ̄n,ω(0)Γµ

i χn̄,ω̄(0) , (8) currentscet

and χn,ω(0) = δ(ω−P̄)(W †ξn)(0). The SCET current correctly reproduces the long distance

physics of the QCD current, and the difference in the short distance physics is contained

in the Wilson coefficient C(ω, ω̄, µ). We will see later on that momentum conservation

dictates that the final form of the cross-section will depend on C(−Q, Q, µ) ≡ C(Q,µ). In

a companion paper
?
[? ] we compute the Wilson coefficient at one loop and show that it is

independent of the Dirac structure Γi and the result up to one loop is

C(Q,µ) = 1 +
αsCF

4π

[
3 log

−Q2

µ2
− log2 −Q2

µ2
− 8 +

π2

6

]
. (9)

The matching scale µ = Q can be chosen so that the Wilson coefficient does not contain any

large logarithms. However, the renormalization scale µ is not an observable parameter, and

the product of the Wilson coefficient C(Q,µ) and the SCETI matrix elements is independent

of the scale µ. This allows us to using the renormalization group (RG) evolution to determine

the Wilson coefficient at a lower scale µ. This RG evolution of the hard Wilson coefficient

sums logarithms of µ/Q.

Using Eqs.(
currentmatchcurrentmatch
7) and (

currentscetcurrentscet
8) in Eq.(

qcdcrosssectionqcdcrosssection
5), the cross-section in SCETI takes the form

σ =
res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)
∑

ij

L(ij)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C†(ω′, ω̄′)〈0|χ̄n,ωΓµ
i χn̄,ω̄|XnXn̄Xs〉〈XnXn̄Xs|χ̄n̄,ω̄′Γ̄ν

j χn,ω′|0〉 . (10) scetcross-section

Here we have decomposed the final states |X〉 into a usoft sector |Xs〉 and collinear sectors

|Xn〉, |Xn̄〉 in the )n and )̄n directions respectively

|X〉 = |XnXn̄Xs〉 = |Xn〉 ⊗ |Xn̄〉 ⊗ |Xs〉 . (11) X1

5

, ,

QCD

SCET

HQET
      Soft

Cross-Talk

top

Q

m t

!t

Integrate out 

Hard Modes

Factorize Jets, Integrate 

 out energetic collinear 

 gluons

Evolution and 

decay of top 

close to mass shell

t t

HQET
antitop

n n

FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

I. INTRODUCTION

Outline for this paper.

• Section I. Introduction, discussion of perturbative corrections to be computed, shape

function, Breit-Wigner, matching.

• Section II. Recap of the factorization theorem from the other paper (remove the deriva-

tion from this draft) and of the observable to be treated (only the final one from the

other paper).

• Section III. SCET computations, matching from QCD. Computation of the running.

• Section IV. bHET computations, matching and running. Results in schemes other

than the pole mass scheme.

• Section V. Final resummed cross-section. Results shown for i) tree level, ii) LL (up

to 1/ε in the anom.dim. with tree level matching), iii) one-loop LL, as in ii) but also

including the one-loop matching results in the boundary conditions in case the log

summation and αs corrections are of similar size. This is a hybrid LL-NLO.

• Section VI. Conclusion

An important outstanding theoretical issue is the formulation of a consistent framework

which incorporates finite width effects in the production of massive unstable particles such

as the top quark or the W boson. The issue is a pressing one in the era of the large hadron

collider (LHC) with expectations of a wealth of data where QCD backgrounds involving

top quarks and W bosons must be understood at a precision level in order to tease out

measurements of exotic new physics. For example tt̄ production is a significant background
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Matching QCD Current onto SCET

• We restrict the final state phase space to high energy top quark pairs by 
matching the QCD current onto the SCET current :

• In this step of matching, the hard modes of QCD are integrated out. 

Γµ
Z = gV γµ + gAγµγ5. The superscript res. on the summation symbol denotes an implied

restriction on the sum over final states X. The final states are restricted to contain top and

anti-top jets with invariant masses close to the top quark mass. The explicit form of these

restrictions will depend on the specific jet algorithms and invariant mass definitions used.

In the next three sections we explore three different jet algorithms and we will make the

restriction over final states explicit at this later stage.

Next we integrate out the hard production energy scale Q by matching the QCD currents

onto currents in SCETI giving us a new expression for the cross-section as defined in SCETI.

B. The SCET Cross-Section

The matching of the QCD currents onto SCETI is given by the convolution

Jµ
i (0) =

∫
dω dω̄ C(ω, ω̄, µ)J µ

i (ω, ω̄, µ) (7) currentmatch

where the SCETI current at leading order in the expansion parameter m/Q is given by

J µ
i (ω, ω̄, µ) = χ̄n,ω(0)Γµ

i χn̄,ω̄(0) , (8) currentscet

and χn,ω(0) = δ(ω−P̄)(W †ξn)(0). The SCET current correctly reproduces the long distance

physics of the QCD current, and the difference in the short distance physics is contained

in the Wilson coefficient C(ω, ω̄, µ). We will see later on that momentum conservation

dictates that the final form of the cross-section will depend on C(−Q, Q, µ) ≡ C(Q,µ). In

a companion paper
?
[? ] we compute the Wilson coefficient at one loop and show that it is

independent of the Dirac structure Γi and the result up to one loop is

C(Q,µ) = 1 +
αsCF

4π

[
3 log

−Q2

µ2
− log2 −Q2

µ2
− 8 +

π2

6

]
. (9)

The matching scale µ = Q can be chosen so that the Wilson coefficient does not contain any

large logarithms. However, the renormalization scale µ is not an observable parameter, and

the product of the Wilson coefficient C(Q,µ) and the SCETI matrix elements is independent

of the scale µ. This allows us to using the renormalization group (RG) evolution to determine

the Wilson coefficient at a lower scale µ. This RG evolution of the hard Wilson coefficient

sums logarithms of µ/Q.

Using Eqs.(
currentmatchcurrentmatch
7) and (

currentscetcurrentscet
8) in Eq.(

qcdcrosssectionqcdcrosssection
5), the cross-section in SCETI takes the form

σ =
res.∑

XnXn̄Xs
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∑

ij

L(ij)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C†(ω′, ω̄′)〈0|χ̄n,ωΓµ
i χn̄,ω̄|XnXn̄Xs〉〈XnXn̄Xs|χ̄n̄,ω̄′Γ̄ν

j χn,ω′|0〉 . (10) scetcross-section

Here we have decomposed the final states |X〉 into a usoft sector |Xs〉 and collinear sectors

|Xn〉, |Xn̄〉 in the )n and )̄n directions respectively
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Γµ
Z = gV γµ + gAγµγ5. The superscript res. on the summation symbol denotes an implied

restriction on the sum over final states X. The final states are restricted to contain top and

anti-top jets with invariant masses close to the top quark mass. The explicit form of these

restrictions will depend on the specific jet algorithms and invariant mass definitions used.

In the next three sections we explore three different jet algorithms and we will make the

restriction over final states explicit at this later stage.

Next we integrate out the hard production energy scale Q by matching the QCD currents

onto currents in SCETI giving us a new expression for the cross-section as defined in SCETI.

B. The SCET Cross-Section

The matching of the QCD currents onto SCETI is given by the convolution

Jµ
i (0) =

∫
dω dω̄ C(ω, ω̄, µ)J µ

i (ω, ω̄, µ) (7) currentmatch

where the SCETI current at leading order in the expansion parameter m/Q is given by

J µ
i (ω, ω̄, µ) = χ̄n,ω(0)Γµ

i χn̄,ω̄(0) , (8) currentscet

and χn,ω(0) = δ(ω−P̄)(W †ξn)(0). The SCET current correctly reproduces the long distance

physics of the QCD current, and the difference in the short distance physics is contained

in the Wilson coefficient C(ω, ω̄, µ). We will see later on that momentum conservation

dictates that the final form of the cross-section will depend on C(−Q, Q, µ) ≡ C(Q,µ). In

a companion paper
?
[? ] we compute the Wilson coefficient at one loop and show that it is

independent of the Dirac structure Γi and the result up to one loop is

C(Q,µ) = 1 +
αsCF

4π

[
3 log

−Q2

µ2
− log2 −Q2

µ2
− 8 +

π2

6

]
. (9)

The matching scale µ = Q can be chosen so that the Wilson coefficient does not contain any

large logarithms. However, the renormalization scale µ is not an observable parameter, and

the product of the Wilson coefficient C(Q,µ) and the SCETI matrix elements is independent

of the scale µ. This allows us to using the renormalization group (RG) evolution to determine

the Wilson coefficient at a lower scale µ. This RG evolution of the hard Wilson coefficient

sums logarithms of µ/Q.

Using Eqs.(
currentmatchcurrentmatch
7) and (

currentscetcurrentscet
8) in Eq.(

qcdcrosssectionqcdcrosssection
5), the cross-section in SCETI takes the form

σ =
res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)
∑

ij

L(ij)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C†(ω′, ω̄′)〈0|χ̄n,ωΓµ
i χn̄,ω̄|XnXn̄Xs〉〈XnXn̄Xs|χ̄n̄,ω̄′Γ̄ν

j χn,ω′|0〉 . (10) scetcross-section

Here we have decomposed the final states |X〉 into a usoft sector |Xs〉 and collinear sectors

|Xn〉, |Xn̄〉 in the )n and )̄n directions respectively

|X〉 = |XnXn̄Xs〉 = |Xn〉 ⊗ |Xn̄〉 ⊗ |Xs〉 . (11) X1

5

Jet field

,

C(−Q,Q,µ)≡C(Q,µ)
• By momentum conservation, the relevant Wilson coefficient that survives is  



Matching QCD onto SCET at One Loop

QCD

SCET

• Note that the logs in the Wilson coefficient vanish by choosing the matching  
scale at :

Adding these contributions together we find

〈p1, p2|J µ
i |0〉 = Γµ

i⊥

[
1 +

αsCF

4π

(
2

ε2
+

3

ε
− 2

ε
ln
−Q2

µ2

− ln2 −Q2

µ2
+ 2 ln2 m2

µ2
+ 4 ln

−∆2

µ2
ln
−Q2

m2

+ ln
m2

µ2
− 4 ln

−∆2

µ2
+ 4 +

π2

2

)]
. (24)

Using the expressions in Eqs. (20) and (24) in the left and right hand side of Eq. (9), we

can solve for the Wilson coefficient. At the scale µ = Q all logarithms vanish and

C(µ) = 1 +
αsCF

4π

[
3 ln

−Q2

µ2
− ln2−Q2

µ2
− 8 +

π2

6

]
. (25)

The presence of the imaginary part in the Wilson coefficient shows that short distance

contributions of the full QCD current can give rise to discontinuities in the forward scattering

amplitude. This is because the QCD current not only describes the production of two on-

shell particles, but also the production of events with multiple partons.

We now repeat the above matching calculation with the two top quarks far off-shell:

p2 $ m2
t . The non-vanishing off-shellness regulates the collinear and soft divergences in

both QCD and SCET. All ultraviolet divergences are regulated in dimensional regularization.

Using p2 $ m2
t has the advantage that we can obtain the result from the massless case, and

we can take this result from Ref. [? ]

〈p1, p2|Jµ
i |0〉 = Γµ

i ZJ

[
1 + CF

αs

4π

(
− ln

−Q2

µ2
− 2 ln2 −p2

Q2

−4 ln
p2

Q2
+ ln

−p2

µ2
− 1− 2π2

3

)]
. (26)

Here p2 ≡ p2
1 = p2

2, Q2 ≡ (p1 + p2)2 and ZJ denotes the renormalization constant required to

subtract off potential UV divergences. This result includes the wavefunction contributions

which cancel the poles of the vertex graph, making the matrix element of the bare current

UV finite. This implies ZJ = 1, as it should for a conserved current.

Next we calculate the matrix element for the SCET current, which can be calculated

from the diagrams in Fig. 3. The result for the sum of the three diagrams including the

wave-function contributions is

〈p1, p2|J µ
i |0〉 = Γµ

i ZJ

[
1 +

αsCF

4π

(
2

ε2
+

3

ε
− 2

ε
ln
−Q2

µ2

+ ln2 −Q2

µ2
− 2 ln2 p2

Q2
− 3 ln

−p2

µ2
+ 7− 5π2

6

)]
. (27)

The 1/ε divergences signal UV divergences in the SCET current, which are subtracted by

the counterterm

ZJ = 1− αsCF

4π

[
2

ε2
+

3

ε
− 2

ε
ln
−Q2

µ2

]
. (28)
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FIG. 3: One-loop vertex corrections in QCD. {qcdloops}

III. SCET RESULTS
{sect:scet}

A. Current Matching and Running in SCET
{sect:scetcurrent}

To determine the Wilson coefficient C we match renormalized QCD and SCET S-matrix

elements, which we will simply call amplitudes. The QCD vertex graphs are given in Fig. 3

where momenta p and p̄ are defined. We use dim.reg. for UV divergences and offshell

momenta to regulate the IR divergences, letting p2 − m2 = p̄2 − m2 = ∆2 "= 0. Since

the SCET current reproduces the infrared physics of the QCD current, we are allowed to

perform the matching with any external states we like, and to pick any infrared regulator,

as long as the same choice is made in the full and effective theories.

Results for the QCD graphs in Fig. 3 are summarized in Eq. (A1) of Appendix A. The

result for the amplitude includes the vertex graph, wavefunction counterterm, and residue,

V3a +Γµ
i (Zψ−1)+Γµ

i (Rψ−1), where the subscript 3a on the V indicates that it is the result

for Fig. 3a. We work in the limit ∆2 # m2 # Q2. The QCD amplitude is

〈p, p̄|J µ
i |0〉QCD = Γµ

i

[
1 +

αsCF

4π

{
2 ln2

(−Q2

m2

)
− 4 ln

(−Q2

m2

)
ln

(Q2

∆2

)
+ 3 ln

(−Q2

m2

)

+4 ln
( m2

−∆2

)
+

2π2

3

)]
, (48)

whre the correct complex structure is obtained by taking ∆2+i0. For the SCET computation

we have the graphs in Fig. 4 which are evaluated in Eqs. (A4,A5) of Appendix A with non-

zero ∆2 = p2 − m2 and ∆̄2 = p̄2 − m2. The sum of collinear and soft vertex graphs,

wavefunction counterterm, and residue is V4a + V4b + V4c + Γµ
i (Zξ − 1) + Γµ

i (Rξ − 1). Taking

∆̄ = ∆ > 0 and again taking ∆2 # m2 # Q2 this gives

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[
1 +

αsCF

4π

{
2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2

)
+ 2 ln2

( µ2

−∆2

)
(49)

+2 ln2
( m2

−∆2

)
− ln2

( µ2Q2

(−∆2)(∆2)

)
+ 4 ln

( m2

−∆2

)
+ 3 ln

( µ2

m2

)
+ 8 +

π2

2

}]
.

The remaining divergences in Eq. (49) are cancelled by the counterterm for the Wilson
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To determine the Wilson coefficient C we match renormalized QCD and SCET S-matrix

elements, which we will simply call amplitudes. The QCD vertex graphs are given in Fig. 3

where momenta p and p̄ are defined. We use dim.reg. for UV divergences and offshell

momenta to regulate the IR divergences, letting p2 − m2 = p̄2 − m2 = ∆2 "= 0. Since

the SCET current reproduces the infrared physics of the QCD current, we are allowed to

perform the matching with any external states we like, and to pick any infrared regulator,

as long as the same choice is made in the full and effective theories.

Results for the QCD graphs in Fig. 3 are summarized in Eq. (A1) of Appendix A. The

result for the amplitude includes the vertex graph, wavefunction counterterm, and residue,

V3a +Γµ
i (Zψ−1)+Γµ

i (Rψ−1), where the subscript 3a on the V indicates that it is the result

for Fig. 3a. We work in the limit ∆2 # m2 # Q2. The QCD amplitude is

〈p, p̄|J µ
i |0〉QCD = Γµ

i

[
1 +

αsCF

4π

{
2 ln2

(−Q2

m2

)
− 4 ln

(−Q2

m2

)
ln

(Q2

∆2

)
+ 3 ln

(−Q2

m2

)

+4 ln
( m2

−∆2

)
+

2π2

3

)]
, (48)

whre the correct complex structure is obtained by taking ∆2+i0. For the SCET computation

we have the graphs in Fig. 4 which are evaluated in Eqs. (A4,A5) of Appendix A with non-

zero ∆2 = p2 − m2 and ∆̄2 = p̄2 − m2. The sum of collinear and soft vertex graphs,

wavefunction counterterm, and residue is V4a + V4b + V4c + Γµ
i (Zξ − 1) + Γµ

i (Rξ − 1). Taking

∆̄ = ∆ > 0 and again taking ∆2 # m2 # Q2 this gives

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[
1 +

αsCF

4π

{
2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2

)
+ 2 ln2

( µ2

−∆2

)
(49)

+2 ln2
( m2

−∆2

)
− ln2

( µ2Q2

(−∆2)(∆2)

)
+ 4 ln

( m2

−∆2

)
+ 3 ln

( µ2

m2

)
+ 8 +

π2

2

}]
.

The remaining divergences in Eq. (49) are cancelled by the counterterm for the Wilson
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FIG. 4: Nonzero one-loop vertex and self-energy corrections in massive SCET. Gluons with a line
through them are collinear, while those without are soft. {scetloops}

coefficient, ZC − 1, giving

Zc = 1− αsCF

4π

[
2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2 − i0

)]
, (50) {Zc}

and the renormalized amplitude in SCET

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[
1 +

αsCF

4π

{
2 ln2

( µ2

−∆2

)
+ 2 ln2

( m2

−∆2

)
− ln2

(µ2Q2

−∆4

)

+4 ln
( m2

−∆2

)
+ 3 ln

( µ2

m2

)
+ 8 +

π2

2

}]
. (51)

Subtracting Eqs. (54) from (48) all dependence on the IR scales m and ∆ cancels. This

demonstrates that massive SCET has the same IR structure as in QCD. Evaluating the

difference at µ = µQ gives

C(µQ, Q) = 1 +
αsCF

4π

[
− ln2

( µ2
Q

−Q2−i0

)
− 3 ln

( µ2
Q

−Q2−i0

)
− 8 +

π2

6

]
. (52)

Since µQ $ Q there are no large logs in the matching, as expected.

Since the result in Eq. (52) is independent of the IR regulator choice it should agree with

that of the massless production current. In Ref. [17] the matching coefficient was computed

using onshell massless quarks, and Eq. (52) agrees with their result. With their regulator

the SCET computation was scaleless. To see more explicitly how the massless computation

gives the same matching coefficient we repeat the steps with an offshellness p2 = p̄2 % m2.

For this case the renormalized one loop QCD amplitude is:

〈p, p̄|J µ
i |0〉

∣∣∣
QCD

= Γµ
i ZJ

[
1+CF

αs

4π

{
−ln

(−Q2

µ2

)
−2 ln2

( p2

Q2

)
−4 ln

( p2

Q2

)
− 2π2

3

}]
, (53) {Jmatrixqcd}

and from Eqs. (A4) and (A5) the renormalized amplitude in SCET is

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[
1+

αsCF

4π

{
2 ln2

( µ2

−p2

)
−ln2

(µ2Q2

−p4

)
+4 ln

( µ2

−p2

)
+8− 5π2

6

}]
. (54) {massivescetvertex1}
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫

d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫

d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞

d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%
+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†

n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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The SCET  Cross-Section
• After matching the QCD current onto SCET, the cross-section has the 
general form :

• The complete set of states in SCET involve only soft and collinear degrees 
of freedom.

Γµ
Z = gV γµ + gAγµγ5. The superscript res. on the summation symbol denotes an implied

restriction on the sum over final states X. The final states are restricted to contain top and

anti-top jets with invariant masses close to the top quark mass. The explicit form of these

restrictions will depend on the specific jet algorithms and invariant mass definitions used.

In the next three sections we explore three different jet algorithms and we will make the

restriction over final states explicit at this later stage.

Next we integrate out the hard production energy scale Q by matching the QCD currents

onto currents in SCETI giving us a new expression for the cross-section as defined in SCETI.

B. The SCET Cross-Section

The matching of the QCD currents onto SCETI is given by the convolution

Jµ
i (0) =

∫
dω dω̄ C(ω, ω̄, µ)J µ

i (ω, ω̄, µ) (7) currentmatch

where the SCETI current at leading order in the expansion parameter m/Q is given by

J µ
i (ω, ω̄, µ) = χ̄n,ω(0)Γµ

i χn̄,ω̄(0) , (8) currentscet

and χn,ω(0) = δ(ω−P̄)(W †ξn)(0). The SCET current correctly reproduces the long distance

physics of the QCD current, and the difference in the short distance physics is contained

in the Wilson coefficient C(ω, ω̄, µ). We will see later on that momentum conservation

dictates that the final form of the cross-section will depend on C(−Q, Q, µ) ≡ C(Q,µ). In

a companion paper
?
[? ] we compute the Wilson coefficient at one loop and show that it is

independent of the Dirac structure Γi and the result up to one loop is

C(Q,µ) = 1 +
αsCF

4π

[
3 log

−Q2

µ2
− log2 −Q2

µ2
− 8 +

π2

6

]
. (9)

The matching scale µ = Q can be chosen so that the Wilson coefficient does not contain any

large logarithms. However, the renormalization scale µ is not an observable parameter, and

the product of the Wilson coefficient C(Q,µ) and the SCETI matrix elements is independent

of the scale µ. This allows us to using the renormalization group (RG) evolution to determine

the Wilson coefficient at a lower scale µ. This RG evolution of the hard Wilson coefficient

sums logarithms of µ/Q.

Using Eqs.(
currentmatchcurrentmatch
7) and (

currentscetcurrentscet
8) in Eq.(

qcdcrosssectionqcdcrosssection
5), the cross-section in SCETI takes the form

σ =
res.∑

XnXn̄Xs

(2π)4 δ4(q−PXn−PXn̄−PXs)
∑

ij

L(ij)
µν

∫
dω dω̄ dω′ dω̄′

×C(ω, ω̄)C†(ω′, ω̄′)〈0|χ̄n,ωΓµ
i χn̄,ω̄|XnXn̄Xs〉〈XnXn̄Xs|χ̄n̄,ω̄′Γ̄ν

j χn,ω′|0〉 . (10) scetcross-section

Here we have decomposed the final states |X〉 into a usoft sector |Xs〉 and collinear sectors

|Xn〉, |Xn̄〉 in the )n and )̄n directions respectively

|X〉 = |XnXn̄Xs〉 = |Xn〉 ⊗ |Xn̄〉 ⊗ |Xs〉 . (11) X1

5
Collinear:  n̄Collinear: n Soft

the n and n̄ directions (see Sec. IIA). However, only |C(Q, µ)|2 will appear in the final

factorization theorem.

Using Eqs. (17) and (18) in Eq.(40), the cross-section in SCET takes the form

σ =
∑

!n

res.
∑

XnXn̄Xs

(2π)4 δ4(q−PXn
−PXn̄

−PXs
)
∑

i

L(i)
µν

∫

dω dω̄ dω′ dω̄′

×C(ω, ω̄)C∗(ω′, ω̄′)〈0|χ̄n̄,ω̄′Γ̄ν
j χn,ω′ |XnXn̄Xs〉〈XnXn̄Xs|χn,ωΓµ

i χn̄,ω̄|0〉 . (44)

Here we have pulled out an explicit sum over the top jet label directions &n and keep only

two collinear sectors L(0)
n and L(0)

n̄ for the SCET description of top and antitop jets. This

allows us to explicitly carry out the integral over the top jet directions &n in Sec. IIID in

parallel to implementing factorization.

In Eq. (44) we have decomposed the final states |X〉 into a soft sector |Xs〉 and collinear

sectors |Xn〉, |Xn̄〉 in the &n and &̄n directions respectively

|X〉 = |XnXn̄Xs〉 . (45)

Since the hard production scale is integrated out by the matching procedure, these states

now form a complete set of final states that can be produced by the SCET currents J µ
i .

This already implements part of the restrictions, “res”, in the sum over states in Eq. (44).

The momentum PX of the final state |X〉 is also decomposed into the momentum of the

collinear and soft sectors:

PX = PXn
+ PXn̄

+ PXs
. (46)

Because the set of hadrons observed in the detector has a well defined set of momenta, it is

possible to impose criteria on the hadrons in the final state to associate them with one of

Xn, Xn̄, or Xs. Thus, the hadronic two-jet state factorizes as a direct product

|X〉 = |Xn〉|Xn̄〉|Xs〉 . (47)

This factorization is also a manifest property of the hadronic states in SCET.

For quark and gluon states in SCET the difference from the purely hadronic case is that

the analog states in Eq. (47) can carry global color quantum numbers. After having made

the soft-collinear decoupling field redefinition, the individual Lagrangians for these sectors

are decoupled, and they only organize themselves into color singlets in the matrix elements

which appear in the observable cross-section. We can take this as a manifestation of quark-

hadron duality. Using the soft-collinear decoupling property from section IIA we can write

the matrix elements in Eq. (44) as
〈

0
∣

∣χa
n̄,ω̄′(Y n̄)ba (ΓYnχn,ω′)b

∣

∣XnXn̄Xs

〉〈

XnXn̄Xs

∣

∣(χn,ωY †
n Γ)c (Y

†

n̄)dcχd
n̄,ω̄

∣

∣0
〉

(48)

=
〈

0
∣

∣χa
n̄,ω̄′

∣

∣Xn̄

〉〈

Xn̄

∣

∣χa′

n̄,ω̄

∣

∣0
〉〈

0
∣

∣χb
n,ω′

∣

∣Xn

〉〈

Xn

∣

∣χb′

n,ω

∣

∣0
〉

×
〈

0
∣

∣(Y n̄)ca(ΓYn)cb
∣

∣Xs

〉〈

Xs

∣

∣(Y †
nΓ)b′c′(Y

†

n̄)a′c′
∣

∣0
〉

,
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Factorized Cross Section in SCET
soft

Collinear:  n̄Collinear: n

• Need to be specific about jet invariant mass definitions to make restrictions 
over final states explicit.

• We use Hemisphere mass definition and make the invariant mass restrictions 
explicit.

We can further simplify the form of the factorized cross-section. First we use the identities

〈Xn|χn,ω′|0〉 = 〈Xn|χnδω′,n̄·P†|0〉 = δω′,p−
Xn

〈Xn|χn|0〉 ,

〈Xn̄|χn̄,ω̄′|0〉 = 〈Xn̄|χn̄δω̄′,n·P†|0〉 = δ−ω̄′,p+
Xn̄

〈Xn̄|χn̄|0〉 , (54)

with similar relations for the other two collinear matrix elements in Eq.(52). Combining this

with the relation δω′,p−
Xn

δω,p−
Xn

= δω′,ωδω,p−
Xn

, and analog for p+
Xn̄

, we can write the product of

collinear matrix elements in Eq.(52) as

〈0|/̂̄nχn,ω′|Xn〉〈Xn|χn,ω|0〉〈0|χn̄,ω̄′|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉
= δω̄′,ω̄ δω′,ω 〈0|/̂̄nχn|Xn〉〈Xn|χn,ω|0〉〈0|χn̄|Xn̄〉〈Xn̄|/̂nχn̄,ω̄|0〉 . (55)

Next we do the sums over ω′, ω̄′ to arrive at the form

σ = K0

∑

"n

res.
∑

XnXn̄Xs

(2π)4 δ4(q−PXn
−PXn̄

−PXs
)〈0|Y n̄ Yn|Xs〉〈Xs|Y †

n Y
†

n̄|0〉

×
∫

dω dω̄ |C(ω, ω̄)|2
〈

0
∣

∣/̂̄nχn

∣

∣Xn

〉〈

Xn

∣

∣χn,ω

∣

∣0
〉〈

0
∣

∣χn̄

∣

∣Xn̄

〉〈

Xn̄

∣

∣/̂nχn̄,ω̄

∣

∣0
〉

. (56)

Before proceeding, we pause to define the thrust axis which is needed to properly define

the invariant mass of jets and state its relation to the direction of the energetic collinear

degrees of freedom. Then in order to make the power counting manifest we decompose the

final state momenta into label and residual parts and perform some general manipulations of

the phase space integrals to setup a formula for the cross-section to be used for the remaining

calculation.

C. Thrust or Jet Axis

The thrust of any event is defined to be

T = max
t̂

∑

i |t̂ · pi|
Q

, (57)

where the sum is over the momenta pi of all the final state particles produced. The thrust

axis t̂ is chosen so that is maximizes the sum of particle momenta projected along t̂. In-

tuitively, for a dijet-like event the thrust axis corresponds to the axis along which most of

the momentum is deposited. Conversely, the thrust is close to its maximum for a dijet-like

event. We choose &n to point along t̂. For an event with exactly two massive stable particles

T =
√

Q2 − 4m2/Q = 1 − 2m2/Q2 + O(m4/Q4), is the maximum allowed thrust. Since we

are interested in thrusts in the dijet region for the top and antitop jets it is convenient to

define a shifted thrust parameter,

τ =

√

1 − 4m2

Q2
− T = 1 − 2m2

Q2
− T + O

(m4

Q4

)

. (58)

24

Hard Wilson coeff.



Hemisphere  Masses

• The jet masses are defined to be the mass of all particles in each hemisphere 
perpendicular to the thrust axis as shown below. 

left hemisphere right hemisphere

CollinearSoft

Thrust 
axis

top quark mass measurements in the upcoming experiments such a framework is imperative.

A top mass determination method where a systematic analytic framework exists and

where the relation between the Lagrangian top mass parameter m and the measured top

mass can be established to high precision is the threshold scan of the line-shape of the

total hadronic cross section in the top-antitop threshold region, Q ≈ 2m, at a future Linear

Collider [8, 9], where Q is the c.m. energy. In this case the system of interest is a top-

antitop quark pair in a color singlet state and the observable is related to a comparatively

simple counting measurement. The line-shape of the cross section rises near a center of

mass energy that is related to a toponium-like top-antitop bound state with a mass that can

be computed perturbatively to very high precision [10, 11, 12, 13, 14] using non-relativistic

QCD (NRQCD) [15, 16] an effective theory (EFT) for nonrelativistic heavy quark pairs. The

short lifetime of the top quark, τ = 1/Γ ≈ (1.5 GeV)−1, provides an infrared cutoff for all

kinematic scales governing the top-antitop dynamics and leads to a strong power suppression

of non-perturbative QCD effects. Experimental studies concluded that theoretical as well as

experimental systematic uncertainties for this method are at a level of only 100 MeV [17, 18].

The most suitable top quark mass schemes are the so-called threshold masses [12], which

can be related accurately to other short-distance mass schemes such as the running MS

mass. Unfortunately, the threshold scan method cannot be used at the LHC because the

top-antitop invariant mass cannot be determined with sufficient accuracy.

In this work we use EFT’s to provide, for the first time, an analytic framework that can

be applied to systematically describe the perturbative and nonperturbative aspects of top

quark invariant mass distributions obtained from reconstruction. As a first step towards

developing a detailed framework for the LHC, we focus in this work on jets in a e+e−

Linear Collider environment at c.m. energies far above threshold Q ∼ 0.5−1 TeV. For e+e−

collisions strong interaction effects arising from the initial state can be neglected and there

is no need to identify or remove any ‘beam remnant’ or underlying events. Also, in the e+e−

framework it is easier to formulate shape variables like thrust that control the jet-likeness

and the soft dynamics of an event. We consider the double differential top and antitop

invariant mass distribution, where each of the invariant masses, M2
t and M2

t̄ , are defined

from all particles in each of the two hemispheres that are determined by the events thrust

axis. In Fig. 1 we show an example of such an event. Other invariant mass definitions,

e.g. based on kT algorithms and criteria to identify jets from top and antitop decay can be

employed as well. Our approach also works for all-jet and lepton plus jet final states. Our

focus is to study the double differential invariant mass distribution in the peak region close

to the top mass, so that M2
t −m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is theoretically convenient

to introduce the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ % m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.
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The Hemisphere Scenario: Jet Invariant Masses
• The total soft momentum of the final state is the sum of the soft 
momentum in each hemisphere

is PXn and in the n̄-hemisphere is PXn̄ . For the total usoft momentum care must be taken

since it receives contributions from both hemispheres. For each final state the total usoft

momentum is divided as:

kXs = ka
s + kb

s (19) thrust-1

where ka
s and kb

s correspond to the total momenta of all the usoft partons in the n and

n̄ hemispheres respectively. One can think of these hemisphere momenta as the result of

‘hemisphere projection operators’ P̂a, P̂b:

P̂a |Xs >= ka
s |Xs >, P̂b |Xs >= kb

s |Xs > . (20)

In other words, these projection operators act on each state |Xs > picking out the partons

in each hemisphere and adding up their total momentum. Thus, we can now define the

invariant mass of each jet as (PXn + ka
s )

2 and (PXn̄ + kb
s)

2 for the n and n̄ hemispheres

respectively.

Now that we have properly defined the invariant mass of each jet we can now apply the

invariant mass constraints. We start in Eq.(
factorizedcross-sectionfactorizedcross-section
17) by inserting the identity operator:

1 =

∫
d4pn d4pn̄ δ4(pn − PXn) δ4(pn̄ − PXn̄), (21) identity-1a

which sets the collinear jet momenta PXn , PXn̄ to pn, pn̄ respectively. We will see that this

step proves useful at a later stage. Now we can introduce the invariant mass constraint

through an additional identity operator as

1 =

∫
dsn δ((pn + k(a)

s )2 −m2 − sn)

∫
dsn̄ δ((pn̄ + k(b)

s )2 −m2 − sn̄), (22) identity-2

which sets the sets the invariant mass of the n and n̄ hemispheres to the parameters sn and

sn̄ respectively. We can now ensure that the invariant mass of each hemisphere is close to

the top mass as defined by the requirement P 2
jet −m2 ∼ mΓ# m2 by restricting the range

of integration over sn, sn̄ to:

−mΓ <∼ sn, sn̄
<∼ mΓ. (23) sn-range

Before inserting the above identity operators in Eq.(
factorizedcross-sectionfactorizedcross-section
17), we first decompose the collinear

and usoft momenta into label and residual parts

pn = p̃n + kn, pn̄ = p̃n̄ + kn̄,

PXn = P̃Xn + KXn , PXn̄ = P̃Xn̄ + KXn̄

PXs = kXs (24) labelresidual

where the last line is a reflection of the fact that the usoft momentum is purely residual.

Furthermore the integrals in Eq.(
identity-1aidentity-1a
21) can be decomposed into a sum over labels and integrals

8

Hemisphere Projection Operators
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Hemisphere soft momenta

• The invariant mass of each jet is defined to be

the antiparticle direction. On the other hand, the top spin is only about 20% polarized

(for unpolarized e+e− beams and upon averaging over the directions of the thrust axis) [62],

and thus the top decay products in the top rest frame are distributed isotropically to a

rather good approximation. The fraction of events in this kinematical situation is therefore

suppressed by (m/Q)2 and can be neglected at leading order in the power counting. Of

course the analogous conclusion also applies to the antitop quark in the n̄ hemisphere. So at

leading order in the power counting it is consistent to employ the invariant mass definition

of the previous paragraph.

The jet invariant mass definitions can be implemented into the cross-section of Eq. (69)

by inserting underneath the
∑

Xs
the identity relation

1 =

∫

dM2
t δ

(

(pn + ka
s )

2 − M2
t

)

∫

dM2
t̄ δ

(

(pn̄ + kb
s)

2 − M2
t̄

)

=

∫

dM2
t δ

(

(pn + ka
s )

2 − m2 − st

)

∫

dM2
t̄ δ

(

(pn̄ + kb
s)

2 − m2 − st̄

)

, (73)

where st(Mt) and st̄(Mt̄) from Eq. (1), i.e. it should be understood that st,t̄ are functions

of M2
t,t̄. In the second line m is defined as the pole mass. It is straightforward to switch

the final result to a suitable short distance mass definition, as we explain in section IIIG.

Decomposing the δ-functions at leading order gives

δ((pn + ka
s )

2 − m2 − st) =
1

Q
δ
(

k+
n + k+a

s − m2 + st

Q

)

,

δ((pn̄ + kb
s)

2 − m2 − st̄) =
1

Q
δ
(

k−
n̄ + k−b

s − m2 + st̄

Q

)

, (74)

where we set p̃−n = p̃+
n̄ = Q due to δ-functions from Eq. (67). Carrying out the integration

over k+
s and k−

s in Eq. (69) sets the arguments of the soft function to z± = 0. Inserting the

identity relation

1 =

∫

d"+d"−δ("+ − k+a
s )δ("− − k−b

s ) (75)

the differential cross-section then reads

d2σ

dM2
t dM2

t̄

=
σ0

Q2

∣

∣C(Q, µ)
∣

∣

2
∫

dk+
n dk−

n̄ d"+ d"−δ
(

k+
n + "+ − m2 + st

Q

)

δ
(

k−
n̄ + "− − m2 + st̄

Q

)

×
∑

Xn

1

2π

∫

d4x eik+
n x−/2 tr

〈

0
∣

∣/̂̄nχn(x)
∣

∣Xn

〉〈

Xn

∣

∣χn,Q(0)
∣

∣0
〉

×
∑

Xn̄

1

2π

∫

d4y eik−
n̄ y+/2 tr

〈

0
∣

∣χn̄(y)
∣

∣Xn̄

〉〈

Xn̄

∣

∣/̂nχn̄,−Q(0)
∣

∣0
〉

×
∑

Xs

1

Nc
δ("+ − k+a

s )δ("− − k−b
s )tr〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†

n̄(0)|0〉 , (76)
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invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn
and in

the n̄-hemisphere is PXn̄
. The total final state soft momentum KXs

is split between the two

hemispheres and can be divided as:

KXs
= ka

s + kb
s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn
+ ka

s )
2 and (PXn̄

+ kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn
) δ4(pn̄ − PXn̄

) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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the antiparticle direction. On the other hand, the top spin is only about 20% polarized

(for unpolarized e+e− beams and upon averaging over the directions of the thrust axis) [62],

and thus the top decay products in the top rest frame are distributed isotropically to a
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by inserting underneath the
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the identity relation
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where st(Mt) and st̄(Mt̄) from Eq. (1), i.e. it should be understood that st,t̄ are functions

of M2
t,t̄. In the second line m is defined as the pole mass. It is straightforward to switch

the final result to a suitable short distance mass definition, as we explain in section IIIG.

Decomposing the δ-functions at leading order gives
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n̄ + k−b

s − m2 + st̄

Q

)

, (74)

where we set p̃−n = p̃+
n̄ = Q due to δ-functions from Eq. (67). Carrying out the integration

over k+
s and k−

s in Eq. (69) sets the arguments of the soft function to z± = 0. Inserting the

identity relation

1 =

∫

d"+d"−δ("+ − k+a
s )δ("− − k−b

s ) (75)

the differential cross-section then reads
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invariant mass of all the final state particles in each hemisphere. As we show explicitly below,

the requirement that these jet invariant masses are both close to the top mass, automatically

restricts the final state to be dijet-like, and eliminates the need to introduce any additional

event-shape constraint. We stress that some mechanism to control the soft particles is

absolutely crucial for establishing the factorization theorem and the unique definition of

the soft function S. Here this is accomplished by the fact that all soft particles enter the

invariant mass variables M2
t,t̄.

The invariant mass of each hemisphere includes contributions from both soft and collinear

particles. The total momentum of the collinear particles in the n-hemisphere is PXn
and in

the n̄-hemisphere is PXn̄
. The total final state soft momentum KXs

is split between the two

hemispheres and can be divided as:

KXs
= ka

s + kb
s (71)

where ka
s and kb

s correspond to the total momenta of all the soft partons in the n and n̄

hemispheres respectively. It is useful to think of these hemisphere momenta as the result of

hemisphere projection operators P̂a, P̂b:

P̂a |Xs〉 = ka
s |Xs〉, P̂b |Xs〉 = kb

s |Xs〉. (72)

In other words, these projection operators act on each state |Xs〉, pick out the soft partons

in the respective hemisphere and add up their total momentum. Note that the eigenvalues

are depend on the state Xs, so ka
s = ka

s [Xs] and kb
s = kb

s[Xs]. We can now define the invariant

mass of each jet as (PXn
+ ka

s )
2 and (PXn̄

+ kb
s)

2 for the n and n̄ hemispheres respectively.

The delta functions δ4(pn − PXn
) δ4(pn̄ − PXn̄

) in the second line of Eq. (65) allow us to

define the jet invariant masses in terms of pn, pn̄ as (pn + ka
s )

2 and (pn̄ + kb
s)

2 for the n and

n̄ hemispheres respectively.

Note that this implements a very simple form of a jet algorithm. For a different jet

algorithm we would change the definitions of the operators P̂a and P̂b. Running a jet

algorithm in inclusive e+e− mode [61] each soft parton is still accounted for, having a certain

probability of being assigned to either the top or the antitop invariant mass. We discuss

other algorithms in section V.

If the top quark were a stable particle these invariant mass definitions would be obvious

because n- and n̄-collinear particles would be fully radiated into the n- and n̄-hemispheres,

respectively. Due to the finite lifetime of the top quark, however, we need to convince

ourselves that this invariant mass definition still works if the n- and n̄-collinear momenta

of the top and antitop quarks, respectively, are distributed among their decay products. So

let us consider the top quark in the n-hemisphere. Since the top rest frame is boosted with

respect to the e+e− c.m. frame with a boost factor Q/m, top decay events can have final

state particles appearing in the n̄-hemisphere of the antitop quark only if these final state

particles have an angle (defined in the top rest frame) smaller than m/Q with respect to
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the antiparticle direction. On the other hand, the top spin is only about 20% polarized

(for unpolarized e+e− beams and upon averaging over the directions of the thrust axis) [62],

and thus the top decay products in the top rest frame are distributed isotropically to a

rather good approximation. The fraction of events in this kinematical situation is therefore

suppressed by (m/Q)2 and can be neglected at leading order in the power counting. Of

course the analogous conclusion also applies to the antitop quark in the n̄ hemisphere. So at

leading order in the power counting it is consistent to employ the invariant mass definition

of the previous paragraph.

The jet invariant mass definitions can be implemented into the cross-section of Eq. (69)

by inserting underneath the
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the identity relation

1 =

∫

dM2
t δ

(

(pn + ka
s )

2 − M2
t

)

∫

dM2
t̄ δ

(

(pn̄ + kb
s)

2 − M2
t̄

)

=

∫

dM2
t δ

(

(pn + ka
s )

2 − m2 − st

)

∫

dM2
t̄ δ

(

(pn̄ + kb
s)

2 − m2 − st̄

)

, (73)

where st(Mt) and st̄(Mt̄) from Eq. (1), i.e. it should be understood that st,t̄ are functions

of M2
t,t̄. In the second line m is defined as the pole mass. It is straightforward to switch

the final result to a suitable short distance mass definition, as we explain in section IIIG.
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where we set p̃−n = p̃+
n̄ = Q due to δ-functions from Eq. (67). Carrying out the integration

over k+
s and k−

s in Eq. (69) sets the arguments of the soft function to z± = 0. Inserting the

identity relation

1 =

∫

d"+d"−δ("+ − k+a
s )δ("− − k−b

s ) (75)

the differential cross-section then reads
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the antiparticle direction. On the other hand, the top spin is only about 20% polarized

(for unpolarized e+e− beams and upon averaging over the directions of the thrust axis) [62],

and thus the top decay products in the top rest frame are distributed isotropically to a

rather good approximation. The fraction of events in this kinematical situation is therefore

suppressed by (m/Q)2 and can be neglected at leading order in the power counting. Of

course the analogous conclusion also applies to the antitop quark in the n̄ hemisphere. So at

leading order in the power counting it is consistent to employ the invariant mass definition

of the previous paragraph.

The jet invariant mass definitions can be implemented into the cross-section of Eq. (69)

by inserting underneath the
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where st(Mt) and st̄(Mt̄) from Eq. (1), i.e. it should be understood that st,t̄ are functions

of M2
t,t̄. In the second line m is defined as the pole mass. It is straightforward to switch

the final result to a suitable short distance mass definition, as we explain in section IIIG.
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where we set p̃−n = p̃+
n̄ = Q due to δ-functions from Eq. (67). Carrying out the integration

over k+
s and k−

s in Eq. (69) sets the arguments of the soft function to z± = 0. Inserting the

identity relation
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,

• Make the invariant mass restrictions explicit by inserting the identity operator

...SOME ALGEBRA...



 Hard Wilson 
Coefficient 

 Top Jet 
Function

 Anti-Top Jet 
Function

 Soft Cross Talk
Function

SCET Cross-section

• In the hemisphere scenario the SCET cross section takes the form:
Using Eq.(79) and performing all the remaining integrals in the cross-section of Eq.(76) we

arrive at the SCET result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q,µ)

∫ ∞

−∞
d"+d"− Jn(st − Q"+, µ)Jn̄(st̄ − Q"−, µ)Shemi("

+, "−, µ) , (81) {SCETcross-hem}

where the hard function HQ(Q,µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi("
+, "−, µ) =

1

Nc

∑

Xs

δ("+ − k+a
s )δ("− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi("+, "−) =

δ("+)δ("−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
n Yn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi("+, "−) is governed by non-perturbative QCD

effects. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

F. Factorization of Jet mass effects in HQET
{subsectionfactorizationtheorem}

The main result of the last subsection is the factorization of the scales Q and m in the

differential cross section of Eq. (81). To sum large logs in this result the SCET production

current can be run from µ = Q down to µ = m, which then characterizes the typical virtual-

ity of the collinear degrees of freedom in massive SCET. In the process, large logarithms of

Q/m are summed into the Wilson coefficient C(Q, µ). However, at this stage the differential

cross-section still contains large logarithms of Γ/m and ŝn,n̄/m in the jet functions, and of

∆/m in the soft function. These large logs can spoil the perturbative computation of the

jet functions Jn and Jn̄. To sum these logarithms requires us to match at and run below

the scale µ = m. This can be done in the “usual” way by matching and running of the

bHQET current in Eq. (33). But due to the factorization properties of SCET which leads

to a decoupling of the n-collinear, n̄-collinear, and soft sectors, the matching and running

below the scale µ = m can also be done independently for Jn, Jn̄, and S. In the following

we explain this second method of summing the remaining logarithms.

As discussed in Sec. II B the soft function above and below the scale m is identical. Large

logarithms in the soft function can be summed by computing the anomalous dimension of
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫

d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫

d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞

d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%
+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†

n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
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The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section
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where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by
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At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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Universal 
nonperturbative

soft function

Calculable 
perturbative top 
and antitop jet 

functions

•The same soft function appears in massless dijets(Korchemsky & Sterman; Bauer, 
Lee, Manohar, Wise).



Running in SCET: Top Down vs. Bottom Up



Who Wants to Run?Using Eq.(79) and performing all the remaining integrals in the cross-section of Eq.(76) we

arrive at the SCET result for double differential hemisphere invariant mass cross-section
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t̄

= σ0 HQ(Q,µ)

∫ ∞

−∞
d"+d"− Jn(st − Q"+, µ)Jn̄(st̄ − Q"−, µ)Shemi("

+, "−, µ) , (81) {SCETcross-hem}

where the hard function HQ(Q,µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi("
+, "−, µ) =

1

Nc

∑

Xs

δ("+ − k+a
s )δ("− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi("+, "−) =

δ("+)δ("−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
n Yn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi("+, "−) is governed by non-perturbative QCD

effects. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

F. Factorization of Jet mass effects in HQET
{subsectionfactorizationtheorem}

The main result of the last subsection is the factorization of the scales Q and m in the

differential cross section of Eq. (81). To sum large logs in this result the SCET production

current can be run from µ = Q down to µ = m, which then characterizes the typical virtual-

ity of the collinear degrees of freedom in massive SCET. In the process, large logarithms of

Q/m are summed into the Wilson coefficient C(Q, µ). However, at this stage the differential

cross-section still contains large logarithms of Γ/m and ŝn,n̄/m in the jet functions, and of

∆/m in the soft function. These large logs can spoil the perturbative computation of the

jet functions Jn and Jn̄. To sum these logarithms requires us to match at and run below

the scale µ = m. This can be done in the “usual” way by matching and running of the

bHQET current in Eq. (33). But due to the factorization properties of SCET which leads

to a decoupling of the n-collinear, n̄-collinear, and soft sectors, the matching and running

below the scale µ = m can also be done independently for Jn, Jn̄, and S. In the following

we explain this second method of summing the remaining logarithms.

As discussed in Sec. II B the soft function above and below the scale m is identical. Large

logarithms in the soft function can be summed by computing the anomalous dimension of
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Run the jet and soft 
functions:

Bottom Up

Run the Wilson
Coefficient: 

Top Down 

•Scale independence of the cross-section requires the equivalence of top down 
and bottom up running. This provides a check on the consistency of the jet 
invariant mass definition.

the invariant masses in the process, and the evolution falls into case 1) rather than case 2).

This freezing out of the extra ln(µ/Q) that appears in the anomalous dimension in case 2)

happens at µ = m. Thus there is a remnant in the local running in HQET in the form of a

fixed ln(Q/m) factor in the anomalous dimension.

1. SCET renormalization

Top-down running. In SCET we can renormalize the current Jµ
i by switching from a

bare to renormalized Wilson coefficient,

Cbare = Zc C = C + (Zc − 1)C , (24) {CZc}

where insertions of (Zc− 1)C are treated as counterterms. Field, coupling, and mass renor-

malization are given by

ξbare
n = Z1/2

ψ ξn , Abare
n = Z1/2

A An , mbare = m + δm , gbare = Zgµ
εg , (25) {Zscet}

and are all identical to those in QCD [3, 26, 27].2 Eqs. (24) and (25) suffice to cancel all UV

divergences involving Jµ
i . The SCET factorization theorem in Eq. (12) is generated by a

time-ordered product of two Jµ
i currents. The objects in Eq. (12) are all finite; it only involves

renormalized objects. The individual objects depend on the choice of renormalization scheme

in SCET, but this dependence cancels out between HQ, Jn, Jn̄, and S. The renormalization

group equation for C and HQ are

µ
d

dµ
C(Q, µ) = γc(Q, µ) C(Q,µ) , µ

d

dµ
HQ(Q,µ) = γHQ(Q, µ) HQ(Q,µ) , (26) {gammacgammaH}

where from Eq. (24) γc = −Z−1
c µd/dµ Zc, and since HQ = |C|2 we have γHQ = γc + γ∗c . For

the solution to the RGE equation for HQ we write

HQ(Q,µ) = UHQ(µ, µh) HQ(Q,µh) , (27) {UH}

where µ < µh. The evolution contained in UH is shown in Fig. 2.

Bottom-Up Running. It is well known that there is an alternative but equivalent way to

renormalize composite operators like Jµ
i , which is often referred to as operator renormaliza-

tion (see Ref. [29] for a review). Rather than introducing a Z-factor for the C, we introduce

one for the current, (Jµ
i )bare = ZJJµ

i . The equivalence of the two approaches implies that

ZJ = Z−1
c . We consider a variant of this that instead introduces Z-factors for the objects Jn,

Jn̄, and S in the SCET factorization theorem, Eq. (12). In section II A these objects were

2 This is true to all orders in αs because there are no zero-bin subtractions [28] for the collinear two-point
functions. To see this note that all soft loop corrections to these functions vanish in Feynman gauge since
n2 = 0. Thus there is no region that is double counted and would require a subtraction.
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defined by matrix elements of time-ordered products of fields, but note that each involves

only a subset of the fields in the current Jµ
i . To switch from bare to renormalized matrix

elements we write

Jbare
n (s) =

∫
ds′ ZJn(s−s′) Jn(s′, µ) , Jbare

n̄ (s̄) =

∫
ds′ ZJn̄(s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi(!

+, !−) =

∫
d! ′+d! ′− ZS(!+−! ′+, !−−! ′−) Shemi(!

′+, ! ′−, µ) , (28) {ZJJS}

where these equations can be inverted using
∫

ds Z−1
Jn

(s′′ − s)ZJn(s − s′) = δ(s′′ − s′) etc.

The renormalization group equations are

µ
d

dµ
Jn,n̄(s, µ) =

∫
ds′ γJn,n̄(s−s′) Jn,n̄(s′, µ), (29) {rgeJS}

µ
d

dµ
S(!+, !−, µ) =

∫
d! ′+d! ′− γS(!+−! ′+, !−−! ′−)S(! ′+, ! ′−, µ) ,

where the anomalous dimensions are defined as

γJn,n̄(s−s′) = −
∫

ds′′ Z−1
Jn,n̄

(s−s′′)µ
d

dµ
ZJn,n̄(s′′−s′) , (30)

γS(!+−! ′+, !−−! ′−) = −
∫

d!
′′+d!

′′−Z−1
S (!+−!

′′+, !−−!
′′−)µ

d

dµ
ZS(!

′′+−! ′+, !
′′−−! ′−) ,

and are finite as ε→ 0. For the solutions to the RGE’s in Eq. (29) we write

Jn(s, µ) =

∫
ds′ UJn(s−s′, µ, µm) Jn(s′, µm) , (31) {UJS}

Jn̄(s, µ) =

∫
ds̄′ UJn̄(s̄−s̄′, µ, µm) Jn̄(s̄′, µm) ,

Shemi(!
+, !−, µ) =

∫
d! ′+d! ′− US(!+−! ′+, !−−! ′−, µ, µm) Shemi(!

′+, ! ′−, µm) .

The evolution kernels UJn , UJn̄ , and US take us from the low-scale µm to a larger scale µ as

shown in Fig. 2.

Consistency Condition. Using Eq. (28) we obtain a finite result for the factorization

theorem by including counterterms for the individual SCET Feynman diagrams for each of

Jn, Jn̄, and S. If we instead use Zc then a finite result is only obtained when the current

counterterm graphs are added to the sum of all graphs for the factorization theorem at some

order in αs. Since the two results must give us the same answer, there is a consistency

condition. To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using

either counterterm renormalization or operator renormalization. Equating the results we

find that

|Zc|2 δ(s−Q! ′+) δ(s̄−Q! ′−) =

∫
d!+d!− Z−1

Jn
(s−Q!+) Z−1

Jn̄
(s̄−Q!−) Z−1

S (!+−! ′+, !−−! ′−) .

(32) {cons1}
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∫
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d

dµ
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γS(!+−! ′+, !−−! ′−) = −
∫

d!
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d

dµ
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and are finite as ε→ 0. For the solutions to the RGE’s in Eq. (29) we write

Jn(s, µ) =

∫
ds′ UJn(s−s′, µ, µm) Jn(s′, µm) , (31) {UJS}

Jn̄(s, µ) =

∫
ds̄′ UJn̄(s̄−s̄′, µ, µm) Jn̄(s̄′, µm) ,

Shemi(!
+, !−, µ) =

∫
d! ′+d! ′− US(!+−! ′+, !−−! ′−, µ, µm) Shemi(!

′+, ! ′−, µm) .

The evolution kernels UJn , UJn̄ , and US take us from the low-scale µm to a larger scale µ as

shown in Fig. 2.

Consistency Condition. Using Eq. (28) we obtain a finite result for the factorization

theorem by including counterterms for the individual SCET Feynman diagrams for each of

Jn, Jn̄, and S. If we instead use Zc then a finite result is only obtained when the current

counterterm graphs are added to the sum of all graphs for the factorization theorem at some

order in αs. Since the two results must give us the same answer, there is a consistency

condition. To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using

either counterterm renormalization or operator renormalization. Equating the results we

find that

|Zc|2 δ(s−Q! ′+) δ(s̄−Q! ′−) =

∫
d!+d!− Z−1

Jn
(s−Q!+) Z−1

Jn̄
(s̄−Q!−) Z−1

S (!+−! ′+, !−−! ′−) .

(32) {cons1}
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FIG. 4: Nonzero one-loop vertex and self-energy corrections in massive SCET. Gluons with a line
through them are collinear, while those without are soft. {scetloops}

coefficient, ZC − 1, giving

Zc = 1− αsCF

4π

[
2

ε2
+

3

ε
+

2

ε
ln

( µ2

−Q2 − i0

)]
, (50) {Zc}

and the renormalized amplitude in SCET

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[
1 +

αsCF

4π

{
2 ln2

( µ2

−∆2

)
+ 2 ln2

( m2

−∆2

)
− ln2

(µ2Q2

−∆4

)

+4 ln
( m2

−∆2

)
+ 3 ln

( µ2

m2

)
+ 8 +

π2

2

}]
. (51)

Subtracting Eqs. (54) from (48) all dependence on the IR scales m and ∆ cancels. This

demonstrates that massive SCET has the same IR structure as in QCD. Evaluating the

difference at µ = µQ gives

C(µQ, Q) = 1 +
αsCF

4π

[
− ln2

( µ2
Q

−Q2−i0

)
− 3 ln

( µ2
Q

−Q2−i0

)
− 8 +

π2

6

]
. (52)

Since µQ $ Q there are no large logs in the matching, as expected.

Since the result in Eq. (52) is independent of the IR regulator choice it should agree with

that of the massless production current. In Ref. [17] the matching coefficient was computed

using onshell massless quarks, and Eq. (52) agrees with their result. With their regulator

the SCET computation was scaleless. To see more explicitly how the massless computation

gives the same matching coefficient we repeat the steps with an offshellness p2 = p̄2 % m2.

For this case the renormalized one loop QCD amplitude is:

〈p, p̄|J µ
i |0〉

∣∣∣
QCD

= Γµ
i ZJ

[
1+CF

αs

4π

{
−ln

(−Q2

µ2

)
−2 ln2

( p2

Q2

)
−4 ln

( p2

Q2

)
− 2π2

3

}]
, (53) {Jmatrixqcd}

and from Eqs. (A4) and (A5) the renormalized amplitude in SCET is

〈p, p̄|Jµ
i |0〉SCET = Γµ

i

[
1+

αsCF

4π

{
2 ln2

( µ2

−p2

)
−ln2

(µ2Q2

−p4

)
+4 ln

( µ2

−p2

)
+8− 5π2

6

}]
. (54) {massivescetvertex1}
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−2εαs + β(αs), which gives

γc(µ) = −Z−1
c (µ)µ

d

dµ
Zc(µ) = −αsCF

π

[
ln

µ2

−Q2 − iε
+

3

2

]
,

γH(µ) = γc(µ) + γ∗c (µ) = −αsCF

π

[
2 ln

µ2

Q2
+ 3

]
. (53)

The coefficient of the ln(µ/Q) term in γc is the well known cusp anomalous dimension [33,

34, 35, 36, 37, 38]. The solution of the RG equation (26) is straightforward and we find

UHQ(µ, µQ) =

[
αs(µ)

αs(µQ)

] −16πCF
β2
0 αs(µQ)

+
6CF
β0

(
µ

µQ

)−8CF /β0(µQ

Q

) 8CF
β0

ln
(

αs(µ)
αs(µQ)

)
, (54) {runcoeff}

where β0 = 11CA/3− 2nf/3. Recall that HQ(Q, µ) = UHQ(µ, µQ)HQ(Q,µQ) and H(Q,µQ)

is given in Eq. (49). Note that if we had solved the equation for C(Q,µ) that there would

be an extra phase

C(Q,µ) =
√

HQ(Q,µ)

[
αs(µ)

αs(µQ)

]−2πi
CF
β0

, (55)

which cancels out in HQ = |C(Q,µ)|2.

B. SCET Jet Functions and their Running
{sect:scetjet}

Next we compute the SCET jet functions Jn and Jn̄, defined in Eq. (16), perturbatively

in αs. By the symmetry n ↔ n̄, the results for Jn and Jn̄ are identical, so for convenience

we focus on the former. The purpose of this calculation is two-fold. First we determine ZJn

by renormalizing the jet function, and hence determine the anomalous dimension γJn and

evolution kernel UJn . Second the value of the renormalized jet function is needed for the

matching onto bHQET at a scale µ # m, which we perform in section IV B below. Since

both this running and matching are independent of infrared physics below m we are free

to carry it out for free stable top quark states. Thus in this section we set the electroweak

coupling g2 = 0.

From Eq. (16), the tree-level jet funtions are simply given by the discontinuity of the

collinear propagator:

J tree
n,Q (s, m, Γ = 0, µ) = δ(s). (56)

At one loop, the jet functions are given by the discontiniuities of the diagrams shown in

Fig. 5. Results for these graphs are summarized in Eq. (A9) of Appendix (A), and give

J5a+J5b+J5c+J5d+J5e (57) {Jabcdesum}

=
iαsCF

8π2 s

{
4

ε2
+

4

ε
ln

( µ2

−s

)
+

3

ε
+2 ln2

( µ2

−s

)
+2 ln2

(m2

−s

)
+3 ln

( µ2

m2

)
−4 ln

(−s

m2

)
+8+π2

}
,
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−2εαs + β(αs), which gives

γc(µ) = −Z−1
c (µ)µ

d

dµ
Zc(µ) = −αsCF

π

[
ln

µ2

−Q2 − iε
+

3

2

]
,

γH(µ) = γc(µ) + γ∗c (µ) = −αsCF

π
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2 ln

µ2
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+ 3

]
. (53)

The coefficient of the ln(µ/Q) term in γc is the well known cusp anomalous dimension [33,

34, 35, 36, 37, 38]. The solution of the RG equation (26) is straightforward and we find

UHQ(µ, µQ) =
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αs(µ)

αs(µQ)

] −16πCF
β2
0 αs(µQ)

+
6CF
β0

(
µ

µQ

)−8CF /β0(µQ

Q

) 8CF
β0

ln
(

αs(µ)
αs(µQ)

)
, (54) {runcoeff}

where β0 = 11CA/3− 2nf/3. Recall that HQ(Q, µ) = UHQ(µ, µQ)HQ(Q,µQ) and H(Q,µQ)

is given in Eq. (49). Note that if we had solved the equation for C(Q,µ) that there would

be an extra phase

C(Q,µ) =
√

HQ(Q,µ)

[
αs(µ)

αs(µQ)

]−2πi
CF
β0

, (55)

which cancels out in HQ = |C(Q,µ)|2.

B. SCET Jet Functions and their Running
{sect:scetjet}

Next we compute the SCET jet functions Jn and Jn̄, defined in Eq. (16), perturbatively

in αs. By the symmetry n ↔ n̄, the results for Jn and Jn̄ are identical, so for convenience

we focus on the former. The purpose of this calculation is two-fold. First we determine ZJn

by renormalizing the jet function, and hence determine the anomalous dimension γJn and

evolution kernel UJn . Second the value of the renormalized jet function is needed for the

matching onto bHQET at a scale µ # m, which we perform in section IV B below. Since

both this running and matching are independent of infrared physics below m we are free

to carry it out for free stable top quark states. Thus in this section we set the electroweak

coupling g2 = 0.

From Eq. (16), the tree-level jet funtions are simply given by the discontinuity of the

collinear propagator:

J tree
n,Q (s, m, Γ = 0, µ) = δ(s). (56)

At one loop, the jet functions are given by the discontiniuities of the diagrams shown in

Fig. 5. Results for these graphs are summarized in Eq. (A9) of Appendix (A), and give

J5a+J5b+J5c+J5d+J5e (57) {Jabcdesum}

=
iαsCF

8π2 s

{
4

ε2
+

4

ε
ln

( µ2

−s

)
+

3

ε
+2 ln2

( µ2

−s

)
+2 ln2

(m2

−s

)
+3 ln

( µ2

m2

)
−4 ln

(−s

m2

)
+8+π2

}
,
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a) b) c) d) e)

!m2

FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

B. SCET Jet Functions and their Running
{sect:scetjet}

Next we compute the SCET jet functions Jn and Jn̄, defined in Eq. (18), perturbatively

in αs. By the symmetry n ↔ n̄, the results for Jn and Jn̄ are identical, so for convenience

we focus on the former. The purpose of this calculation is two-fold. First we determine ZJn

by renormalizing the jet function, and hence determine the anomalous dimension γJn and

evolution kernel UJn . Second the value of the renormalized jet function is needed for the

matching onto bHQET at a scale µ " m, which we perform in section ?? below. Since both

this running and matching are independent of infrared physics below m we are free to carry

it out for free stable top quark states. Thus in this section we set the electroweak coupling

g2 = 0.

From Eq. (18), the tree-level jet funtions are simply given by the discontinuity of the

collinear propagator:

J tree
n,Q (s, m, Γ = 0, µ) = δ(s). (59)

At one loop, the jet functions are given by the discontiniuities of the diagrams shown in

Fig. 5. Results for these graphs are summarized in Eq. (A9) of Appendix (A), and give

J5a+J5b+J5c+J5d+J5e (60) {Jabcdesum}

=
iαsCF

8π2 s

{
4

ε2
+

4

ε
ln

( µ2

−s

)
+

3

ε
+2 ln2

( µ2

−s

)
+2 ln2

(m2

−s

)
+3 ln

( µ2

m2

)
−4 ln

(−s

m2

)
+8+π2

}
,

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x− i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x− i0)

x + i0
= −π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (61) {discontinuities}
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FIG. 6: Graphs for the hemisphere soft function at one-loop. In this figure the double solid lines
denote Y -Wilson lines,and the line with ticks is the final state cut. {softgraphs}

have ln(m2/κ2
1) ∼ ln(Γ/m). This motivates the matching onto bHQET and RG-evolution

between m and Γ to be carried out below. For later convenience we quote the result for Jn

with the choice κ1 = m,

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{
8

m2

[
θ(x) ln(x)

x

]

+

− 4

m2

[
1+ln

( µ2

m2

)][
θ(x)

x

]

+

+ δ(s)

[
2 ln2

( µ2

m2

)
+3 ln

( µ2

m2

)
+8−π2

3

]}
. (68) {Jrenm}

C. Hemisphere Soft Function and its Running
{sect:soft}

In this section we compute the renormalization group evolution of the hemisphere soft-

function, Shemi(&+, &−, µ). Although this function is non-perturbative, its dependence on the

scale µ can be computed in perturbation theory, and is the same as the µ-dependence of

Shemi defined with partonic matrix elements.

To compute Shemi we use the squared matrix-element expression in Eq. (15) involving the

states |Xs〉. At O(αs) the corresponding diagrams are shown in Fig. 6, where the double

lines denote the four Y -Wilson lines. Fig. 6a,b are virtual graphs with |Xs〉 = |0〉, while

Fig. 6b,c are real emission graphs with a one-gluon state, |Xs〉 = |εA
µ 〉. Results for the

graphs are summarized in Eq. (A11) of Appendix A, and together with the tree-level matrix

element give

Sbare
hemi(&

+, &−) = δ(&+)δ(&−) (69) {softsum}

+
CF αs

π

eεγE

ε Γ(1−ε)

µ2ε

κ2ε
2

[
δ(&−)θ(&+)

κ2

(κ2

&+

)1+2ε

+
δ(&+)θ(&−)

κ2

(κ2

&−

)1+2ε
]
.

Sbare
hemi(&

+, &−) is independent of the mass scale κ2 > 0 we introduced here. However κ2

facilitates using the standard distribution relation for dimensionless variables

θ(x)

x1+2ε
= −δ(x)

2ε
+

[θ(x)

x

]

+
− 2ε

[θ(x) ln x

x

]

+
+ O(ε2) , (70)
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FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x− i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x− i0)

x + i0
= −π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (58) {discontinuities}

we find that up to one-loop order the bare SCET jet function is

Jbare
n (s) = δ(s) +

αsCF

4π

{
8

κ2
1

[κ2
1θ(s) ln
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s
κ2
1

)

s

]
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− 4

κ2
1
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1

ε
+1+ln
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κ2
1
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+ln

(µ2

κ2
1
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κ2

1θ(s)

s

]

+

+ δ(s)
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4

ε2
+

4

ε
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1

)
+

3

ε
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1
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+2 ln2
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1

)
+3 ln
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1

)
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1
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3
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(59) {Jbare}

This implies that the Z-factor defined in Eq. (28) is

ZJn(s−s′) = δ(s−s′) +
αsCF

4π

{
δ(s−s′)

[
4

ε2
+

4

ε
ln

(µ2

κ2
1

)
+

3

ε

]
− 4

ε κ2
1

[
κ2

1θ(s−s′)

s−s′

]

+

}
, (60) {ZJ}

which gives the anomalous dimension

γJn(s− s′) =
αsCF

π

{
2

κ2
1

[
κ2

1θ(s−s′)

s−s′

]

+

+ δ(s−s′)

[
− 2 ln

(µ2

κ2
1

)
− 3

2

]}
. (61) {gammaJn}

Despite appearances Jbare
n (s), ZJn(s− s′), and γJn(s− s′) are all independent of the choice

for κ1. In Appendix C we presented a general solution to anomalous dimension equations in-

volving a +-function and δ-function. Applying this to Eq. (61) to derive the renormalization

group evolution from a low-scale µm up to µ gives

UJn(s− s′, µ, µm) =
eL1

(
µ2

m eγE
)ω1

Γ(−ω1)

[
θ(s−s′)

(s−s′)1+ω1

]

+

, (62) {UJ}

where

ω1(µ, µm) = −4CF

β0
ln

[ αs(µ)

αs(µm)

]
, eL1(µ,µm) =

( µ

µm

)8CF
β0

[
αs(µ)

αs(µm)

] 16πCF
β2
0αs(µm)

− 3CF
β0

. (63) {wL1}
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lines denote the four Y -Wilson lines. Fig. 6a,b are virtual graphs with |Xs〉 = |0〉, while

Fig. 6b,c are real emission graphs with a one-gluon state, |Xs〉 = |εA
µ 〉. Results for the

graphs are summarized in Eq. (A11) of Appendix A, and together with the tree-level matrix

element give

Sbare
hemi("

+, "−) = δ("+)δ("−) (66) {softsum}

+
CF αs

π

eεγE

ε Γ(1−ε)

µ2ε

κ2ε
2

[
δ("−)θ("+)

κ2

(κ2

"+

)1+2ε

+
δ("+)θ("−)

κ2

(κ2

"−

)1+2ε
]
.

Sbare
hemi("

+, "−) is independent of the mass scale κ2 > 0 we introduced here. However κ2

facilitates using the standard distribution relation for dimensionless variables

θ(x)

x1+2ε
= −δ(x)

2ε
+

[θ(x)

x

]

+
− 2ε

[θ(x) ln x

x

]

+
+ O(ε2) , (67)
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π
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δ("−)

ε κ2

[κ2θ("+)

"+

]

+
+

δ("+)

ε κ2

[κ2θ("−)

"−

]

+

− δ("+)δ("−)

ε
ln

(µ2

κ2
2

)
+G("+, "−)

}
, (68) {softsum2}

where G("+, "−) contains the finite terms

G("+, "−) =
1

2
δ("+)δ("−)

[π2

6
−ln2

(µ2

κ2
2

)]
+

δ("−)

κ2
ln

(µ2

κ2
2

)[κ2θ("+)

"+

]

+
(69)

+
δ("+)

κ2
ln

(µ2

κ2
2

)[κ2θ("−)

"−

]

+
− 2δ("−)

κ2

[θ("+) ln("+/κ2)

"+/κ2
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+
− 2δ("+)

κ2
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"−/κ2

]

+

}
.

To renormalize Sbare
hemi we define the soft counterterm

Zs("
′+−"+, " ′−−"−) = δ("+−" ′+)δ("−−" ′−)− CF αs

π
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(70) {Zs}
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(µ2

κ2
2
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,

leaving the renormalized soft-function

Shemi("
+, "−) = δ("+)δ("−) +

CF αs

π
G("+, "−) . (71) {Sren}

We caution that the soft-function is sensitive to non-perturbative effects, so the perturbative

quark-level result in Eq. (71) should not be used. Nevertheless, from Zs we can compute

the anomalous dimension

γS("+, "−) = δ("−)γs("
+) + δ("+)γs("

−) ,

γs("
±) =

2CF αs

π

{
1

κ2

[κ2θ("±)

"±

]

+
−δ("±) ln

( µ

κ2

)}
, (72) {gammaS}
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the invariant masses in the process, and the evolution falls into case 1) rather than case 2).

This freezing out of the extra ln(µ/Q) that appears in the anomalous dimension in case 2)

happens at µ = m. Thus there is a remnant in the local running in HQET in the form of a

fixed ln(Q/m) factor in the anomalous dimension.

1. SCET renormalization

Top-down running. In SCET we can renormalize the current Jµ
i by switching from a

bare to renormalized Wilson coefficient,

Cbare = Zc C = C + (Zc − 1)C , (24) {CZc}

where insertions of (Zc− 1)C are treated as counterterms. Field, coupling, and mass renor-

malization are given by

ξbare
n = Z1/2

ψ ξn , Abare
n = Z1/2

A An , mbare = m + δm , gbare = Zgµ
εg , (25) {Zscet}

and are all identical to those in QCD [3, 26, 27].2 Eqs. (24) and (25) suffice to cancel all UV

divergences involving Jµ
i . The SCET factorization theorem in Eq. (12) is generated by a

time-ordered product of two Jµ
i currents. The objects in Eq. (12) are all finite; it only involves

renormalized objects. The individual objects depend on the choice of renormalization scheme

in SCET, but this dependence cancels out between HQ, Jn, Jn̄, and S. The renormalization

group equation for C and HQ are

µ
d

dµ
C(Q, µ) = γc(Q, µ) C(Q,µ) , µ

d

dµ
HQ(Q,µ) = γHQ(Q, µ) HQ(Q,µ) , (26) {gammacgammaH}

where from Eq. (24) γc = −Z−1
c µd/dµ Zc, and since HQ = |C|2 we have γHQ = γc + γ∗c . For

the solution to the RGE equation for HQ we write

HQ(Q,µ) = UHQ(µ, µh) HQ(Q,µh) , (27) {UH}

where µ < µh. The evolution contained in UH is shown in Fig. 2.

Bottom-Up Running. It is well known that there is an alternative but equivalent way to

renormalize composite operators like Jµ
i , which is often referred to as operator renormaliza-

tion (see Ref. [29] for a review). Rather than introducing a Z-factor for the C, we introduce

one for the current, (Jµ
i )bare = ZJJµ

i . The equivalence of the two approaches implies that

ZJ = Z−1
c . We consider a variant of this that instead introduces Z-factors for the objects Jn,

Jn̄, and S in the SCET factorization theorem, Eq. (12). In section II A these objects were

2 This is true to all orders in αs because there are no zero-bin subtractions [28] for the collinear two-point
functions. To see this note that all soft loop corrections to these functions vanish in Feynman gauge since
n2 = 0. Thus there is no region that is double counted and would require a subtraction.
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defined by matrix elements of time-ordered products of fields, but note that each involves

only a subset of the fields in the current Jµ
i . To switch from bare to renormalized matrix

elements we write

Jbare
n (s) =

∫
ds′ ZJn(s−s′) Jn(s′, µ) , Jbare

n̄ (s̄) =

∫
ds′ ZJn̄(s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi(!

+, !−) =

∫
d! ′+d! ′− ZS(!+−! ′+, !−−! ′−) Shemi(!

′+, ! ′−, µ) , (28) {ZJJS}

where these equations can be inverted using
∫

ds Z−1
Jn

(s′′ − s)ZJn(s − s′) = δ(s′′ − s′) etc.

The renormalization group equations are

µ
d

dµ
Jn,n̄(s, µ) =

∫
ds′ γJn,n̄(s−s′) Jn,n̄(s′, µ), (29) {rgeJS}

µ
d

dµ
S(!+, !−, µ) =

∫
d! ′+d! ′− γS(!+−! ′+, !−−! ′−)S(! ′+, ! ′−, µ) ,

where the anomalous dimensions are defined as

γJn,n̄(s−s′) = −
∫

ds′′ Z−1
Jn,n̄

(s−s′′)µ
d

dµ
ZJn,n̄(s′′−s′) , (30)

γS(!+−! ′+, !−−! ′−) = −
∫

d!
′′+d!

′′−Z−1
S (!+−!

′′+, !−−!
′′−)µ

d

dµ
ZS(!

′′+−! ′+, !
′′−−! ′−) ,

and are finite as ε→ 0. For the solutions to the RGE’s in Eq. (29) we write

Jn(s, µ) =

∫
ds′ UJn(s−s′, µ, µm) Jn(s′, µm) , (31) {UJS}

Jn̄(s, µ) =

∫
ds̄′ UJn̄(s̄−s̄′, µ, µm) Jn̄(s̄′, µm) ,

Shemi(!
+, !−, µ) =

∫
d! ′+d! ′− US(!+−! ′+, !−−! ′−, µ, µm) Shemi(!

′+, ! ′−, µm) .

The evolution kernels UJn , UJn̄ , and US take us from the low-scale µm to a larger scale µ as

shown in Fig. 2.

Consistency Condition. Using Eq. (28) we obtain a finite result for the factorization

theorem by including counterterms for the individual SCET Feynman diagrams for each of

Jn, Jn̄, and S. If we instead use Zc then a finite result is only obtained when the current

counterterm graphs are added to the sum of all graphs for the factorization theorem at some

order in αs. Since the two results must give us the same answer, there is a consistency

condition. To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using

either counterterm renormalization or operator renormalization. Equating the results we

find that

|Zc|2 δ(s−Q! ′+) δ(s̄−Q! ′−) =

∫
d!+d!− Z−1

Jn
(s−Q!+) Z−1

Jn̄
(s̄−Q!−) Z−1

S (!+−! ′+, !−−! ′−) .

(32) {cons1}
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find that
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Top Down

Bottom Up

Evolution

The consistency condition can also be written in terms of the evolution kernels. To derive

this write Eq. (12) at the scale µm and evolve H up to µ using Eq. (27) and U−1
HQ

(µm, µ) =

UHQ(µ, µm). Then write Eq. (12) at the scale µ and relate it to Jn, Jn̄, and S evaluated at

µm using Eq. (31). This gives the consistency condition

UHQ(µ, µm) δ(s−Q" ′+) δ(s̄−Q" ′−) (33) {cons2}

=

∫
d"+d"− UJn(s−Q"+, µ, µm)UJn̄(s̄−Q"−, µ, µm)US("+−" ′+, "−−" ′−, µ, µm) .

This result expresses the equivalence of running the factorization theorem between µh and

µm from the top-down versus from the bottom-up. This is pictured in Fig. (2). Eq, (33)

also states that when the convolution RGE’s for each of Jn, Jn̄, and S are combined that

the result is local running for HQ without a convolution.

2. bHQET renormalization

Top-Down Running. Next we take up renormalization in bHQET. For features that are

similar to SCET we will be more brief, so we can focus on the differences. A renormalization

constant for the bHQET current is defined as

Cbare
m = ZCm Cm = Cm + (ZCm − 1)Cm , (34) {Zcm}

and while gluon field and coupling renormalization in HQET and QCD are the same, the

quark field renormalization differs, with hbare
v = Z1/2

h hv. The bHQET factorization theorem

in Eq. (12) is generated by a time-ordered product of two Jµ
bHQET currents. The soft graphs in

bHQET are identical to those in SCET, and the infrared divergences of the collinear graphs

in SCET exactly match those in bHQET [2]. Thus, if we regulate the IR in bHQET with an

offshellness then the same cancellation between collinear and soft graphs that yielded local

running in SCET also occurs in bHQET. So the running of Cm is also local. Next recall

that the + and − bHQET sectors are decoupled, so we immediately see that the anomalous

dimension for Cm can depend on n̄ · v− = Q/m, n · v+ = Q/m, and n·n̄ = 2, but does not

have any other dependence on m or Q. The angle of the kink between Wilson lines can be

made explict by transforming to sterile HQET fields, h̄v+W+
n = h̄(0)

v+ (W †
v+

Wn) and W †
n̄hv+

= (W †
n̄Wv−)h(0)

v− . Unlike SCET, the angles are fixed n̄ · v+ = Q/m and n · v− = Q/m, and

independent of µ. Thus from the renormalization theorem for kinked Wilson lines [30, 31, 32]

the anomalous dimension will involve only a ln(Q/m). Since this log is independent of µ the

RG-evolution below m does not exhibit as strong of a scale dependence as in SCET. The

evolution equations for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(
m,

Q

m
, µ

)
= γCm

(Q

m
, µ

)
Cm

(
m,

Q

m
, µ

)
,

µ
d

dµ
Hm

(
m,

Q

m
, µ

)
= γHm

(Q

m
, µ

)
Hm

(
m,

Q

m
, µ

)
. (35) {hqetrunning}
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Top Down 
Running

Bottom Up 
Running

Q

Scales

m

P̂+
a projects out the total +-momentum of soft particles in hemisphere-a (and P̂−b the −-

momentum in hemisphere-b). The same function Shemi appears in event shapes for massless

two-jet production [14, 15, 16]. In Ref. [1] it was shown that S(!+, !−) is not affected by

the top-quark width, nor by passing below the top-quark mass scale. The form with the

time ordered products will be useful for our computations. The one-loop renormalization

of 〈0|Y n̄Yn|Xs〉 was carried out in Ref. [24]. However, this can not be directly connected to

the RGE for Shemi, because the formula that connects the renormalization of the squared

matrix element to that for Shemi diverges as discussed in Ref. [25], where the RGE for Shemi

is derived.

Matrix elements of top-quark collinear fields in SCET give jet functions Jn for the top-

quark jet, and Jn̄ for the antitop jet,

Jn(Qr+
n − m2) =

−1

8πNcQ

∫
d4x eirn·x Disc

[
tr 〈0|T{χn,Q(x)/̄nχn(0)}|0〉

]
,

Jn̄(Qr−n̄ − m2) =
−1

8πNcQ

∫
d4x eirn̄·x Disc

[
tr 〈0|T{χn̄,−Q(x)/nχn̄(0)}|0〉

]
, (18) {jetfunc2}

where the tr is over color and spin indices and Nc = 3 is the number of colors. These jet

functions Jn and Jn̄ depend on both the mass and width of the top-quarks, and at this stage

the LO SCET factorization theorem is
(

dσ

dst dst̄

)

hemi

= σ0 HQ(Q,µ)

∫
d!+d!−Jn(st − Q!+, m, Γ, µ) Jn̄(st̄ − Q!−, m, Γ, µ)Shemi(!

+, !−, µ),

(19) {SFactThm}

which is similar to massless jets.

The Jn and Jn̄ functions can be factorized further by matching onto boosted HQET

(bHQET) jet functions B±. We work with a definition of st and st̄ that is not sensitive to

fluctuations at m, so that we have the same definition in SCET and bHQET. In this case

the jet functions matching takes the simple form [1]

Jn(st, m, Γ, µ) = T+(m, µ)B+(ŝt, Γ, µ) + O
( Γ

m

)
+ O

( ŝt

m

)
,

Jn̄(st̄, m, Γ, µ) = T−(m, µ)B−(ŝt̄, Γ, µ) + O
( Γ

m

)
+ O

( ŝt̄

m

)
. (20) {BFactThm}

Although not written explicitly, T± also depend on the ratio Q/m = n̄ · v+ = n · v− through

their anomalous dimensions. With ŝt and ŝt̄ held fixed the HQET jet functions B+ and B−
are independent of the top-quark mass, but still depend on the top-quark width. They are

defined by matrix elements of fields in boosted HQET

B+(2v+ ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v+(x)Wn(x)W †

n(0)hv+(0)}|0〉 ,

B−(2v− ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v−(x)Wn̄(x)W †

n̄(0)hv−(0)}|0〉 , (21)
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of 〈0|Y n̄Yn|Xs〉 was carried out in Ref. [24]. However, this can not be directly connected to

the RGE for Shemi, because the formula that connects the renormalization of the squared

matrix element to that for Shemi diverges as discussed in Ref. [25], where the RGE for Shemi

is derived.

Matrix elements of top-quark collinear fields in SCET give jet functions Jn for the top-

quark jet, and Jn̄ for the antitop jet,
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n − m2) =
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8πNcQ
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[
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−1
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∫
d4x eirn̄·x Disc

[
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]
, (18) {jetfunc2}

where the tr is over color and spin indices and Nc = 3 is the number of colors. These jet

functions Jn and Jn̄ depend on both the mass and width of the top-quarks, and at this stage

the LO SCET factorization theorem is
(

dσ

dst dst̄

)

hemi

= σ0 HQ(Q,µ)

∫
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(19) {SFactThm}

which is similar to massless jets.

The Jn and Jn̄ functions can be factorized further by matching onto boosted HQET

(bHQET) jet functions B±. We work with a definition of st and st̄ that is not sensitive to

fluctuations at m, so that we have the same definition in SCET and bHQET. In this case

the jet functions matching takes the simple form [1]

Jn(st, m, Γ, µ) = T+(m, µ)B+(ŝt, Γ, µ) + O
( Γ

m

)
+ O

( ŝt

m

)
,

Jn̄(st̄, m, Γ, µ) = T−(m, µ)B−(ŝt̄, Γ, µ) + O
( Γ

m
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+ O

( ŝt̄

m

)
. (20) {BFactThm}

Although not written explicitly, T± also depend on the ratio Q/m = n̄ · v+ = n · v− through

their anomalous dimensions. With ŝt and ŝt̄ held fixed the HQET jet functions B+ and B−
are independent of the top-quark mass, but still depend on the top-quark width. They are

defined by matrix elements of fields in boosted HQET

B+(2v+ ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v+(x)Wn(x)W †

n(0)hv+(0)}|0〉 ,

B−(2v− ·r) =
−1

4πNcm

∫
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[
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two-jet production [14, 15, 16]. In Ref. [1] it was shown that S(!+, !−) is not affected by

the top-quark width, nor by passing below the top-quark mass scale. The form with the

time ordered products will be useful for our computations. The one-loop renormalization

of 〈0|Y n̄Yn|Xs〉 was carried out in Ref. [24]. However, this can not be directly connected to

the RGE for Shemi, because the formula that connects the renormalization of the squared

matrix element to that for Shemi diverges as discussed in Ref. [25], where the RGE for Shemi

is derived.

Matrix elements of top-quark collinear fields in SCET give jet functions Jn for the top-

quark jet, and Jn̄ for the antitop jet,

Jn(Qr+
n − m2) =

−1

8πNcQ

∫
d4x eirn·x Disc

[
tr 〈0|T{χn,Q(x)/̄nχn(0)}|0〉

]
,

Jn̄(Qr−n̄ − m2) =
−1

8πNcQ

∫
d4x eirn̄·x Disc

[
tr 〈0|T{χn̄,−Q(x)/nχn̄(0)}|0〉

]
, (18) {jetfunc2}

where the tr is over color and spin indices and Nc = 3 is the number of colors. These jet

functions Jn and Jn̄ depend on both the mass and width of the top-quarks, and at this stage

the LO SCET factorization theorem is
(

dσ

dst dst̄

)

hemi

= σ0 HQ(Q,µ)

∫
d!+d!−Jn(st − Q!+, m, Γ, µ) Jn̄(st̄ − Q!−, m, Γ, µ)Shemi(!

+, !−, µ),

(19) {SFactThm}

which is similar to massless jets.

The Jn and Jn̄ functions can be factorized further by matching onto boosted HQET

(bHQET) jet functions B±. We work with a definition of st and st̄ that is not sensitive to

fluctuations at m, so that we have the same definition in SCET and bHQET. In this case

the jet functions matching takes the simple form [1]

Jn(st, m, Γ, µ) = T+(m, µ)B+(ŝt, Γ, µ) + O
( Γ

m

)
+ O

( ŝt

m

)
,

Jn̄(st̄, m, Γ, µ) = T−(m, µ)B−(ŝt̄, Γ, µ) + O
( Γ

m

)
+ O

( ŝt̄

m

)
. (20) {BFactThm}

Although not written explicitly, T± also depend on the ratio Q/m = n̄ · v+ = n · v− through

their anomalous dimensions. With ŝt and ŝt̄ held fixed the HQET jet functions B+ and B−
are independent of the top-quark mass, but still depend on the top-quark width. They are

defined by matrix elements of fields in boosted HQET

B+(2v+ ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v+(x)Wn(x)W †

n(0)hv+(0)}|0〉 ,

B−(2v− ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v−(x)Wn̄(x)W †

n̄(0)hv−(0)}|0〉 , (21)

12

P̂+
a projects out the total +-momentum of soft particles in hemisphere-a (and P̂−b the −-

momentum in hemisphere-b). The same function Shemi appears in event shapes for massless

two-jet production [14, 15, 16]. In Ref. [1] it was shown that S(!+, !−) is not affected by

the top-quark width, nor by passing below the top-quark mass scale. The form with the

time ordered products will be useful for our computations. The one-loop renormalization

of 〈0|Y n̄Yn|Xs〉 was carried out in Ref. [24]. However, this can not be directly connected to

the RGE for Shemi, because the formula that connects the renormalization of the squared

matrix element to that for Shemi diverges as discussed in Ref. [25], where the RGE for Shemi

is derived.

Matrix elements of top-quark collinear fields in SCET give jet functions Jn for the top-

quark jet, and Jn̄ for the antitop jet,

Jn(Qr+
n − m2) =

−1

8πNcQ

∫
d4x eirn·x Disc

[
tr 〈0|T{χn,Q(x)/̄nχn(0)}|0〉

]
,

Jn̄(Qr−n̄ − m2) =
−1

8πNcQ

∫
d4x eirn̄·x Disc

[
tr 〈0|T{χn̄,−Q(x)/nχn̄(0)}|0〉

]
, (18) {jetfunc2}

where the tr is over color and spin indices and Nc = 3 is the number of colors. These jet

functions Jn and Jn̄ depend on both the mass and width of the top-quarks, and at this stage

the LO SCET factorization theorem is
(

dσ

dst dst̄

)

hemi

= σ0 HQ(Q,µ)

∫
d!+d!−Jn(st − Q!+, m, Γ, µ) Jn̄(st̄ − Q!−, m, Γ, µ)Shemi(!

+, !−, µ),

(19) {SFactThm}

which is similar to massless jets.

The Jn and Jn̄ functions can be factorized further by matching onto boosted HQET

(bHQET) jet functions B±. We work with a definition of st and st̄ that is not sensitive to

fluctuations at m, so that we have the same definition in SCET and bHQET. In this case

the jet functions matching takes the simple form [1]

Jn(st, m, Γ, µ) = T+(m, µ)B+(ŝt, Γ, µ) + O
( Γ

m

)
+ O

( ŝt

m

)
,

Jn̄(st̄, m, Γ, µ) = T−(m, µ)B−(ŝt̄, Γ, µ) + O
( Γ

m

)
+ O

( ŝt̄

m

)
. (20) {BFactThm}

Although not written explicitly, T± also depend on the ratio Q/m = n̄ · v+ = n · v− through

their anomalous dimensions. With ŝt and ŝt̄ held fixed the HQET jet functions B+ and B−
are independent of the top-quark mass, but still depend on the top-quark width. They are

defined by matrix elements of fields in boosted HQET

B+(2v+ ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v+(x)Wn(x)W †

n(0)hv+(0)}|0〉 ,

B−(2v− ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v−(x)Wn̄(x)W †

n̄(0)hv−(0)}|0〉 , (21)
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We are here.
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time ordered products will be useful for our computations. The one-loop renormalization
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the RGE for Shemi, because the formula that connects the renormalization of the squared
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Matrix elements of top-quark collinear fields in SCET give jet functions Jn for the top-

quark jet, and Jn̄ for the antitop jet,
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m

)
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defined by matrix elements of fields in boosted HQET

B+(2v+ ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v+(x)Wn(x)W †

n(0)hv+(0)}|0〉 ,
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∫
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

I. INTRODUCTION

Outline for this paper.

• Section I. Introduction, discussion of perturbative corrections to be computed, shape

function, Breit-Wigner, matching.

• Section II. Recap of the factorization theorem from the other paper (remove the deriva-

tion from this draft) and of the observable to be treated (only the final one from the

other paper).

• Section III. SCET computations, matching from QCD. Computation of the running.

• Section IV. bHET computations, matching and running. Results in schemes other

than the pole mass scheme.

• Section V. Final resummed cross-section. Results shown for i) tree level, ii) LL (up

to 1/ε in the anom.dim. with tree level matching), iii) one-loop LL, as in ii) but also

including the one-loop matching results in the boundary conditions in case the log

summation and αs corrections are of similar size. This is a hybrid LL-NLO.

• Section VI. Conclusion

An important outstanding theoretical issue is the formulation of a consistent framework

which incorporates finite width effects in the production of massive unstable particles such

as the top quark or the W boson. The issue is a pressing one in the era of the large hadron

collider (LHC) with expectations of a wealth of data where QCD backgrounds involving

top quarks and W bosons must be understood at a precision level in order to tease out

measurements of exotic new physics. For example tt̄ production is a significant background

3
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Top HQET Anti-Top HQET

although any value ∆ > ΛQCD can be considered. So we must switch from SCET onto these

HQET theories, and also consider what happens to the decay interaction in Eq. (29). We

describe the boosted HQET theories in detail in the next section, and we also discuss how

the soft cross-talk interactions remains active when the fluctuations at the top mass scale

m are integrated out.

Since the above Lagrangians and currents are LO in λ, it is natural to ask about the role

power corrections. As it turns out, higher order Lagrangians and currents give corrections

to our analysis at O(αsm/Q), O(∆/Q), O(m2/Q2), or O(Γ/m). The absence of O(m/Q)

implies that the m/Q expansion does not significantly modify the top-mass determination.

The leading action contains all m/Q corrections that do not involve an additional perturba-

tive gluon, so the corrections are O(αsm/Q). Furthermore, many of the higher order m/Q

corrections have the form of normalization corrections, and thus do not change the shape of

the invariant mass distribution. Subleading soft interactions are O(∆/Q). The interplay of

our hemisphere invariant mass variable with the top decay can induce O(m2/Q2) corrections,

as we discuss later on. Finally there will be power corrections of O(Γ/m) in bHQET.

B. Boosted HQET with Unstable Particles and Soft Cross-Talk

Boosted Heavy Quarks. HQET [36, 37, 38, 39, 40] is an effective theory describing the

interactions of a heavy quark with soft degrees of freedom, and also plays a crucial role for

jets initiated by massive unstable particles in the peak regions close to the heavy particles

mass shell. The momentum of a heavy quark interacting with soft degrees of freedom can

be written as

pµ = mvµ + kµ, (30)

where kµ denotes momentum fluctuations due to interactions with the soft degrees of freedom

and is much smaller than the heavy quark mass |kµ| ! m. Also typically vµ ∼ 1 so that we

are parametrically close to the top quark quark rest-frame, vµ = (1,#0).

In the top-quark rest frame, kµ ∼ Γ ! m, and refers to momentum fluctuations of the

top due to interactions with gluons collinear to its direction which preserve the invariant

mass conditions ŝt, ŝt̄ ∼ Γ ! m. For our top-quark analysis, the center of mass frame is

the most convenient to setup the degrees of freedom. In this frame the gluons collinear

to the top-quark which preserve the invariant mass condition will be called ultra-collinear

(ucollinear) in the n direction. A different set of n̄-ucollinear gluons interact with the antitop

quark which moves in the n̄ direction. The leading order Lagrangian of the EFT describing

the evolution and decay of the top or antitop close to it’s mass shell is given by

L+ = h̄v+

(

iv+ · D+ − δm +
i

2
Γ
)

hv+
, L− = h̄v−

(

iv− · D− − δm +
i

2
Γ
)

hv− , (31)
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where the + and − subscripts refer to the top and antitop sectors respectively, and iDµ
± =

i∂µ + gAµ
±. These HQETs represent an expansion in Γ/m. The HQET field hv+

annihilates

top quarks, while hv− creates antitop quarks. In the c.m. frame the components of kµ are

no longer homogeneous in size, and vµ
± /∼ 1. Instead for the (+,−,⊥) components we have

vµ
+ =

(

m

Q
,
Q

m
, 0⊥

)

, kµ
+ ∼ Γ

(

m

Q
,
Q

m
, 1

)

, (32)

vµ
− =

(

Q

m
,
m

Q
, 0⊥

)

, kµ
− ∼ Γ

(

Q

m
,
m

Q
, 1

)

.

This is easily obtained by boosting from the rest frame of the top and antitop respectively

with a boost factor of Q/m. In this naming scheme we will continue to call the gluons

that govern the cross-talk between top and antitop jets soft. We emphasize that they are

not included in L±, since they have nothing to do with the gluons in standard HQET. Soft

gluon interactions will be added below. To avoid double counting between the soft gluons,

the ultracollinear gluons are defined with zero-bin subtractions [51], so that for example

n̄·k+ $= 0 and n·k− $= 0.

The leading order Lagrangians L± contain a residual mass term δm which has to be chosen

according to the desired top quark mass scheme. For a given top mass scheme m, the residual

mass term is determined by its relation to the pole mass mpole = m + δm. Anticipating

that we have to switch to a properly defined short-distance mass definition [52, 53, 54, 55]

when higher order QCD corrections are included, we note that only short-distance mass

definitions are allowed which do not violate the power counting of the bHQET theories,

δm ∼ Γ. This excludes for example the use of the well known MS mass, since in this

scheme δm = αsm % Γ. In practice, this means that using the MS leads to an inconsistent

perturbative expansion as explained in section IIIG. This is the reason why the MS mass

can not be measured directly from reconstruction.

The leading order Lagrangians L± also contain top-width terms iΓ/2. An effective field

theory treatment of the evolution and decay of a massive unstable particle close to its mass

shell was developed in [8, 25, 41, 42, 43]. The examples treated, were the resonant production

of a single unstable scalar particle, and the leading and subleading width corrections to

threshold tt̄ production. In our case, we deal with the energetic pair production of massive

unstable fermions, and we arrive at two copies of this unstable HQET corresponding to the

top and antitop sectors. In these two HQET theories we treat the top and antitop decays

as totally inclusive, since we do not require detailed differential information on the decay

products. So the total top width Γ appears as an imaginary mass term in L±, which is

obtained by simply matching the imaginary part of the top and antitop self-energy graphs

from SCET onto bHQET. As we show in Sec. III, this inclusive treatment of the top decay

is consistent with the hemisphere invariant mass definition we employ in this work up to

power corrections of order (m/Q)2. We will come back to the role of higher order power

corrections in the treatment of the finite top lifetime at the end of this section.
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•Velocity labels and ultracollinear residual momenta:
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

I. INTRODUCTION

Outline for this paper.

• Section I. Introduction, discussion of perturbative corrections to be computed, shape

function, Breit-Wigner, matching.

• Section II. Recap of the factorization theorem from the other paper (remove the deriva-

tion from this draft) and of the observable to be treated (only the final one from the

other paper).

• Section III. SCET computations, matching from QCD. Computation of the running.

• Section IV. bHET computations, matching and running. Results in schemes other

than the pole mass scheme.

• Section V. Final resummed cross-section. Results shown for i) tree level, ii) LL (up

to 1/ε in the anom.dim. with tree level matching), iii) one-loop LL, as in ii) but also

including the one-loop matching results in the boundary conditions in case the log

summation and αs corrections are of similar size. This is a hybrid LL-NLO.

• Section VI. Conclusion

An important outstanding theoretical issue is the formulation of a consistent framework

which incorporates finite width effects in the production of massive unstable particles such

as the top quark or the W boson. The issue is a pressing one in the era of the large hadron

collider (LHC) with expectations of a wealth of data where QCD backgrounds involving

top quarks and W bosons must be understood at a precision level in order to tease out

measurements of exotic new physics. For example tt̄ production is a significant background

3

Decoupled Boosted HQET Sectors



The SCET and BHQET Jet Functions

• The SCET jet functions are given by:

• The BHQET jet function are given by:

ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫

d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫

d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞

d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%
+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†

n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.
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For the SCET collinear degrees of freedom the power counting for the virtuality is p2
c ∼

m2. Thus, Jn and Jn̄ describe the physics of jets with an invariant mass up to M2 ∼ µ2 ∼ m2.

However, the restriction of being in the peak region means that M2−m2 ∼ mΓ # m2. This

disparity gives rise to the large logarithms in the collinear jet functions. Intuitively, this can

also be understood by noting that if one starts out with a top quark that is close to its mass

shell, a typical collinear SCET gluon will knock the top far offshell so that p2
c − m2 ∼ m2.

By restricting the jet functions to p2
c −m2 ∼ mΓ we forbid such real radiation contributions,

but not virtual contributions. The latter must be integrated out explicitly by switching

to the description of the jet functions in the boosted unstable HQET theories discussed in

Sec. II B. In these HQETs the only fluctuations are due to low energy ultracollinear gluons

that preserve the condition M2 − m2 ∼ mΓ # m2.

To determine the definitions of the bHQET jet functions we follow the same procedure as

for the bHQET current in Eq. (35), namely boost the SCET jet function in Eq. (80) to the

heavy quark rest frame, giving ψ̄(x)W (x)W (0)ψ(0), then match onto HQET ψ(x) → hv(x).

We then boost back to the moving frame where v → v±. The spin structure can also be

simplified to give

1

Q
χn,Q

ˆ̄/nχn → 1

Q
h̄v+

ˆ̄/n hv+
=

v+ · n̄
4NcQ

h̄v+
hv+

=
1

4Ncm
h̄v+

hv+
. (83)

Thus the bHQET jet functions are defined as

B+(2v+ ·k) =
−1

8πNcm

∫

d4x eik·x Disc 〈0|T{h̄v+
(0)Wn(0)W †

n(x)hv+
(x)}|0〉 ,

B−(2v− ·k) =
1

8πNcm

∫

d4x eik·x Disc 〈0|T{h̄v−(x)Wn̄(x)W †
n̄(0)hv−(0)}|0〉. (84)

These bHQET jet functions can be calculated using the usual Feynman rules of HQET

except that the gluons have ucollinear scaling as in Eq. (32). The W -Wilson lines in B±

also contain these boosted gluons. Since p2
n − m2 = 2mv+ · k and p2

n̄ − m2 = 2mv− · k, we

can identify the arguments of the bHQET jet functions as

2v+ · k =
st

m
= ŝt , 2v− · k =

st̄

m
= ŝt̄ . (85)

In the factorization theorem these arguments are shifted by the soft gluon momenta as shown

in Eq. (90) below. Recall that the fields hv+
and hv− are defined with zero-bin subtractions

on their ultracollinear momenta. For Eq. (84) these subtractions can be thought of as being

inherited from the SCET fields in the matching. They remove the light-cone singularities

n · k → 0 and n̄ · k → 0 in B+ and B− respectively, and are important to ensure that the

width Γ is sufficient to make B± infrared finite.

In general the matching of the jet functions in SCET onto those in bHQET could take

the form

Jn,n̄(mŝ, Γ, µ) =

∫ ∞

−∞

dŝ′ T±(ŝ, ŝ′, m, µ) B±(ŝ′, Γ, µ), (86)
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SCET

BHQET

• Note that the logs in the Wilson coefficient vanish by choosing scale:

One Loop Matching of SCET onto BHQET
a) b) c) d) e)

!m2

FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

B. SCET Jet Functions and their Running
{sect:scetjet}

Next we compute the SCET jet functions Jn and Jn̄, defined in Eq. (18), perturbatively

in αs. By the symmetry n ↔ n̄, the results for Jn and Jn̄ are identical, so for convenience

we focus on the former. The purpose of this calculation is two-fold. First we determine ZJn

by renormalizing the jet function, and hence determine the anomalous dimension γJn and

evolution kernel UJn . Second the value of the renormalized jet function is needed for the

matching onto bHQET at a scale µ " m, which we perform in section ?? below. Since both

this running and matching are independent of infrared physics below m we are free to carry

it out for free stable top quark states. Thus in this section we set the electroweak coupling

g2 = 0.

From Eq. (18), the tree-level jet funtions are simply given by the discontinuity of the

collinear propagator:

J tree
n,Q (s, m, Γ = 0, µ) = δ(s). (59)

At one loop, the jet functions are given by the discontiniuities of the diagrams shown in

Fig. 5. Results for these graphs are summarized in Eq. (A9) of Appendix (A), and give

J5a+J5b+J5c+J5d+J5e (60) {Jabcdesum}

=
iαsCF

8π2 s

{
4

ε2
+

4

ε
ln

( µ2

−s

)
+

3

ε
+2 ln2

( µ2

−s

)
+2 ln2

(m2

−s

)
+3 ln

( µ2

m2

)
−4 ln

(−s

m2

)
+8+π2

}
,

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x− i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x− i0)

x + i0
= −π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (61) {discontinuities}
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a) b) c)

FIG. 8: bHQET graphs for the top-quark jet function. {forwardII}

B. bHQET Jet functions Matching and Running

Next we compute the bHQET jet functions defined in Eq. (21) perturbatively in αs. As

in the SCET section the results for B+ and B− are related by v+ ↔ v−. We determine the

bHQET jet function renormalization factor ZB, the jet anomalous dimension γB, and the

evolution kernel UB. We also match onto the SCET jet function and verify the consistency

conditions for local running.

At tree level the bHQET jet function are given by the discontinuity of the HQET prop-

agator which includes the width. Thus

Btree
+ (ŝ) =

Γ

s2 + Γ2
. (91)

At one loop the jet function is given by the discontinuities of the diagrams shown in Fig. (8).

Results for individual graphs is given in the appendix. The sum of graphs is

B8a + B8b + B8c =
iαsCF

8π2s

{
2

ε2
+

4

ε
ln

(
µm

−s− imΓ

)
+

2

ε

+ 4 ln2

(
µm

−si−mΓ

)
+ 4 ln

(
µm

−s− imΓ

)
+ 4 +

5π2

6

}
(92)

Taking the discontinuity gives

Bbare
± (ŝ) =

1

π

mΓ

s2 + m2Γ2

{
1 +

αsCF

4π

[
2

ε2
+

2

ε

(
ln

(
µ2m2

s2 + m2Γ2

)
+

2s

mΓ
arctan

(
mΓ

s

))
+

2

ε

+ln2

(
µ2m2

s2 + m2Γ2

)
+ 2 ln

(
µ2m2

s2 + m2Γ2

)
− 4arctan2

(
mΓ

s

)

+4
s

mΓ
arctan

(
mΓ

s

)(
ln

(
µ2m2

s2 + m2Γ2

)
+ 1

)
+ 4 +

5π2

6

]}
. (93)

The counterterm which subtracts off these divergences when convoluted with the bare

bHQET jet function is

ZB±(s−s′) = δ(s−s′)+
αsCF

4π

{
δ(s−s′)

[
2

ε2
+

4

ε
ln

(
µm

κ2
1

)
+

2

ε

]
− 4

κ2
1ε

[
κ2

1θ(s
′ − s)

s′ − s

]

+

}
. (94) {ZBp}

Note we have allowed for an arbitrary rescaling of s → κ2
1x. To determine the bHQET jet

function Wilson coefficient at order αs we need to match the one loop bHQET result to the

one loop SCET result in Eq. (67). However, the result in Eq. (67) is valid for stable tops.
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However, it is simpler to work with the one loop result before taking the discontinuity which

we denote by B. The bare expression for this quantity is given by

Bbare
± (ŝ) =

i

2πm

1

ŝ + iΓ

{
1 +

iαsCF

4π

[
2

ε2
+

4

ε
ln

(
µ

−ŝ− iΓ

)
+

2

ε

+4 ln2

(
µ

−ŝ− iΓ

)
+ 4 ln

(
µ

−ŝ− iΓ

)
+ 4 +

5π2

6

]}
. (90)

Taking the discontinuity of Bbare
± gives the bHQET jet function at one loop

Bbare
± (ŝ) =

1

πm

Γ

ŝ2 + Γ2

{
1 +

αsCF

4π

[
2

ε2
+

2

ε

(
ln

(
µ2

ŝ2 + Γ2

)
+

2ŝ

Γ
arctan

(
Γ

ŝ

))
+

2

ε

+ln2

(
µ2

ŝ2 + Γ2

)
+ 2 ln

(
µ2

ŝ2 + Γ2

)
− 4arctan2

(
Γ

ŝ

)

+4
ŝ

Γ
arctan

(
Γ

ŝ

)(
ln

(
µ2

ŝ2 + Γ2

)
+ 1

)
+ 4 +

5π2

6

]}
. (91)

The counterterm and bHQET matching coefficient can be obtained from either Eq. (90) or

Eq. (91). However the solution of the RGE is much simpler to obtain if we work with Bbare
± ,

which we will do from here on out. The counterterm which subtracts off the divergences

from either Eq. (90) or Eq. (91) when convoluted with the renormalized bHQET jet function

is

ZB±(ŝ− ŝ′) = δ(ŝ− ŝ′)+
αsCF

4π

{
δ(ŝ− ŝ′)

[
2

ε2
+

4

ε
ln

(
µ

κ3

)
+

2

ε

]
− 4

κ3ε

[
κ3θ(ŝ− ŝ′)

ŝ− ŝ′

]

+

}
. (92) {ZBp}

Note care must be taken when computing the integral in Eq. (37) when the plus function

above is convoluted with the tree-level Breit-Wigner. We have allowed for an arbitrary

rescaling of ŝ→ κ3 x. To determine the bHQET jet function Wilson coefficient at order αs

we need to match the one loop bHQET result to the one loop SCET result. Since we are

working with B± we can match to the SCET result before taking the discontinuity. At tree

level this is given by the collinear propagator, and at one loop the result is given by Eq. (57).

Since the top quark is stable in SCET we take the Γ→ 0 limit of Eq. (90) in the matching.

We obtain

T±(µ, m) = 1 +
αsCF

4π

(
ln2m2

µ2
− ln

m2

µ2
+ 4 +

π2

6

)
. (93)

The logarithms are minimized at the matching scale µ ≈ m.

Next we turn to the running of the bHQET jet function. The anomalous dimension

determined from Eq. (92) is

γB±(ŝ− ŝ′, µ) =
αsCF

π

{
2

[
κ3θ(ŝ′ − ŝ)

ŝ′ − ŝ

]

+

−
[
2ln

(
µ

κ3

)
+ 1

]
δ(s′ − s)

}
(94)
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FIG. 5: Scales and functions appearing in the formula for the invariant mass distribution. The

result is determined by matching at the physical scales and running to sum large logs as shown. We
show both the top-down and bottom-up approach to the running. The evolution for UH and UC

is local, while all other evolution functions involve convolutions. Note that the evolution functions

obey UH = UJ− ⊗ UJ+ ⊗ US and UC = UB− ⊗ UB+ ⊗ US where ⊗ indicates convolutions.

F. Factorization of Jet mass effects in HQET

The main result of the last subsection is the factorization of the scales Q and m in the

differential cross section of Eq. (81). In this section we further factorize the scale m from the

low energy scales Γ, ŝ, and ∆. This will allow us to sum large logs of Γ/m and ŝt,t̄/m in the

jet functions, and lower the scale of the soft functions to ∆. This step is also important for

treating the width effects. As explained earlier, one can formulate width effects in a gauge

invariant way with a natural power counting in HQET, whereas doing so in a relativistic

theory such as SCET is notoriously difficult.

To perform the scale separation and sum the logarithms requires us to match and run

below the scale µ = m. This can be done in a standard way, by matching and running of the

bHQET current in Eq. (35), as we described in section IIB. However, due to the factorization

properties of SCET which leads to a decoupling of the n-collinear, n̄-collinear, and soft

sectors, the matching and running below the scale µ = m can also be done independently

for Jn, Jn̄, and S. In the following we explain this second method.

As discussed in Sec. II B the soft function above and below the scale m is identical. Large

logarithms in the soft function can be summed by computing the anomalous dimension of

the soft function and using RG evolution to run between ∆ and Q as illustrated by the line

labeled US in Fig. 5. For the soft function there is no need to match onto a “new” EFT

below m since unlike in the case of the collinear jet functions there is essentially no physics

that needs to be integrated out at m.
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(

m, µm

)

= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)

=
1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(

m,
Q

m
, µm, µ

)

(90)

×
∫ ∞

−∞

d$+d$− B+

(

ŝt −
Q$+

m
, Γ, µ

)

B−

(

ŝt̄ −
Q$−

m
, Γ, µ

)

Shemi($
+, $−, µ).
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where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(

m, µm

)

= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)

=
1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(

m,
Q

m
, µm, µ

)

(90)

×
∫ ∞

−∞

d$+d$− B+

(

ŝt −
Q$+

m
, Γ, µ

)

B−

(

ŝt̄ −
Q$−

m
, Γ, µ

)

Shemi($
+, $−, µ).
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•Matching SCET jet functions onto bHQET:
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FIG. 5: SCET graphs for the one-loop top-quark jet function. Dashed lines are n-collinear quarks
and springs are n-collinear gluons. {forwardI}

where s = s + i0. To take the discontinuity it is convenient to switch to dimensionless

variables which will appear in the +-functions, so we let x = s/κ2
1 where x is dimensionless

and κ1 > 0 is dummy scale with dimensions of mass. Using

Disc
i

2π

1

x + i0
= δ(x), Disc

i

2π

ln(−x− i0)

x + i0
=

[θ(x)

x

]

+
,

Disc
i

2π

ln2(−x− i0)

x + i0
= −π2

3
δ(x) +

[2θ(x)ln(x)

x

]

+
, (58) {discontinuities}

we find that up to one-loop order the bare SCET jet function is

Jbare
n (s) = δ(s) +

αsCF

4π

{
8

κ2
1

[κ2
1θ(s) ln

(
s
κ2
1

)

s

]

+

− 4

κ2
1

[
1

ε
+1+ln

(m2

κ2
1

)
+ln

(µ2

κ2
1

)][
κ2

1θ(s)

s

]

+

+ δ(s)

[
4

ε2
+

4

ε
ln

(µ2

κ2
1

)
+

3

ε
+2 ln2

(µ2

κ2
1

)
+2 ln2

(m2

κ2
1

)
+3 ln

(µ2

κ2
1

)
+ln

(m2

κ2
1

)
+8−π2

3

]}
.

(59) {Jbare}

This implies that the Z-factor defined in Eq. (28) is

ZJn(s−s′) = δ(s−s′) +
αsCF

4π

{
δ(s−s′)

[
4

ε2
+

4

ε
ln

(µ2

κ2
1

)
+

3

ε

]
− 4

ε κ2
1

[
κ2

1θ(s−s′)

s−s′

]

+

}
, (60) {ZJ}

which gives the anomalous dimension

γJn(s− s′) =
αsCF

π

{
2

κ2
1

[
κ2

1θ(s−s′)

s−s′

]

+

+ δ(s−s′)

[
− 2 ln

(µ2

κ2
1

)
− 3

2

]}
. (61) {gammaJn}

Despite appearances Jbare
n (s), ZJn(s− s′), and γJn(s− s′) are all independent of the choice

for κ1. In Appendix C we presented a general solution to anomalous dimension equations in-

volving a +-function and δ-function. Applying this to Eq. (61) to derive the renormalization

group evolution from a low-scale µm up to µ gives

UJn(s− s′, µ, µm) =
eL1

(
µ2

m eγE
)ω1

Γ(−ω1)

[
θ(s−s′)

(s−s′)1+ω1

]

+

, (62) {UJ}

where

ω1(µ, µm) = −4CF

β0
ln

[ αs(µ)

αs(µm)

]
, eL1(µ,µm) =

( µ

µm

)8CF
β0

[
αs(µ)

αs(µm)

] 16πCF
β2
0αs(µm)

− 3CF
β0

. (63) {wL1}

20



Final Form of Differential Cross-Section 

Hard Production 
modes integrated 

out
“Hard” collinear

gluons integrated out
Evolution and decay
of top quark close to 

mass shell

Non-
perturbative
Cross talk

a) b)

FIG. 5: Tree level top-quark jet functions in a) SCET and b) bHQET. {fig:Bjet}

graphs in Fig. 5 which have a trace over spin and color indices. This gives for Γ = 0 and in

the pole mass scheme

BΓ=0
+ (ŝ) =

−1

4πNcm
(−Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1. Plugging Eq. (87) into Eq. (81), the final form for differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)
(90) {bHQETcross-hem}

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ) ,

where we still have HQ(Q, µ) = |C(Q, µ)|2 and the soft function

Shemi($
+, $−, µ) =

1

Nc

∑

Xs

δ($+ − k+a
s )δ($− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (91)

Note that Eq. (90) depends on two renormalization scales, µm and µ. The matching scale

µm ∼ m was the endpoint of the evolution of the hard function HQ(Q, µm). From the

matching at m we get the dependence on µm in Hm, and from running below m we get

in addition a dependence on µ which cancels against dependence on µ in the bHQET jet

functions and the soft function.

So to sum the remaining large logarithms we have in principle two choices. We can either

run the Wilson coefficient Hm of we run the individual functions B± and S. The first option

essentially corresponds to running the bHQET top pair production current of Eq. (33), and

we will call this method “top-down”. The relation

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm)UHm(µm, µ) (92)

defines the corresponding evolution factor UHm that is shown in Fig. 4. The second option

means running the jet functions B± and the soft function Shemi independently with the

evolution factors UB±(µ, µm) and US(µ, µm) respectively, as is also illustrated in Fig. 4. This

running involves convolutions, such as

µ
d

dµ
B+(ŝ, µ) =

∫
dŝ′ γB+(ŝ− ŝ′) B+(ŝ′, µ) ,

B+(ŝ, µm) =

∫
dŝ′ UB+(ŝ− ŝ′, µm, µ) B+(ŝ′, µ) , (93) {Brun}
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B+(ŝ, µ) =

∫
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The consistency condition can also be written in terms of the evolution kernels. To derive

this write Eq. (12) at the scale µm and evolve H up to µ using Eq. (27) and U−1
HQ

(µm, µ) =

UHQ(µ, µm). Then write Eq. (12) at the scale µ and relate it to Jn, Jn̄, and S evaluated at

µm using Eq. (31). This gives the consistency condition

UHQ(µ, µm) δ(s−Q" ′+) δ(s̄−Q" ′−) (33) {cons2}

=

∫
d"+d"− UJn(s−Q"+, µ, µm)UJn̄(s̄−Q"−, µ, µm)US("+−" ′+, "−−" ′−, µ, µm) .

This result expresses the equivalence of running the factorization theorem between µh and

µm from the top-down versus from the bottom-up. This is pictured in Fig. (2). Eq, (33)

also states that when the convolution RGE’s for each of Jn, Jn̄, and S are combined that

the result is local running for HQ without a convolution.

2. bHQET renormalization

Top-Down Running. Next we take up renormalization in bHQET. For features that are

similar to SCET we will be more brief, so we can focus on the differences. A renormalization

constant for the bHQET current is defined as

Cbare
m = ZCm Cm = Cm + (ZCm − 1)Cm , (34) {Zcm}

and while gluon field and coupling renormalization in HQET and QCD are the same, the

quark field renormalization differs, with hbare
v = Z1/2

h hv. The bHQET factorization theorem

in Eq. (12) is generated by a time-ordered product of two Jµ
bHQET currents. The soft graphs in

bHQET are identical to those in SCET, and the infrared divergences of the collinear graphs

in SCET exactly match those in bHQET [2]. Thus, if we regulate the IR in bHQET with an

offshellness then the same cancellation between collinear and soft graphs that yielded local

running in SCET also occurs in bHQET. So the running of Cm is also local. Next recall

that the + and − bHQET sectors are decoupled, so we immediately see that the anomalous

dimension for Cm can depend on n̄ · v− = Q/m, n · v+ = Q/m, and n·n̄ = 2, but does not

have any other dependence on m or Q. The angle of the kink between Wilson lines can be

made explict by transforming to sterile HQET fields, h̄v+W+
n = h̄(0)

v+ (W †
v+

Wn) and W †
n̄hv+

= (W †
n̄Wv−)h(0)

v− . Unlike SCET, the angles are fixed n̄ · v+ = Q/m and n · v− = Q/m, and

independent of µ. Thus from the renormalization theorem for kinked Wilson lines [30, 31, 32]

the anomalous dimension will involve only a ln(Q/m). Since this log is independent of µ the

RG-evolution below m does not exhibit as strong of a scale dependence as in SCET. The

evolution equations for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(
m,

Q

m
, µ

)
= γCm

(Q

m
, µ

)
Cm

(
m,

Q

m
, µ

)
,

µ
d

dµ
Hm

(
m,

Q

m
, µ

)
= γHm

(Q

m
, µ

)
Hm

(
m,

Q

m
, µ

)
. (35) {hqetrunning}

14

 Top Down  Bottom Up

and while gluon field and coupling renormalization in HQET and QCD are the same, the

quark field renormalization differs, with hbare
v = Z1/2

h hv. The bHQET factorization theorem

in Eq. (19) is generated by a time-ordered product of two Jµ
bHQET currents. The soft graphs in

bHQET are identical to those in SCET, and the infrared divergences of the collinear graphs

in SCET exactly match those in bHQET [1]. Thus, if we regulate the IR in bHQET with an

offshellness then the same cancellation between collinear and soft graphs that yielded local

running in SCET also occurs in bHQET. So the running of Cm is also local. Next recall

that the + and − bHQET sectors are decoupled, so we immediately see that the anomalous

dimension for Cm can depend on n̄ · v− = Q/m, n · v+ = Q/m, and n·n̄ = 2, but does not

have any other dependence on m or Q. The angle of the kink between Wilson lines can be

made explict by transforming to sterile HQET fields, h̄v+W+
n = h̄(0)

v+ (W †
v+

Wn) and W †
n̄hv+

= (W †
n̄Wv−)h(0)

v− . Unlike SCET, the angles are fixed n̄ · v+ = Q/m and n · v− = Q/m, and

independent of µ. Thus from the renormalization theorem for kinked Wilson lines [31, 32, 33]

the anomalous dimension will involve only a ln(Q/m). Since this log is independent of µ the

RG-evolution below m does not exhibit as strong of a scale dependence as in SCET. The

evolution equations for Cm and Hm = |Cm|2 are

µ
d

dµ
Cm

(
m,

Q

m
, µ

)
= γCm

(Q

m
, µ

)
Cm

(
m,

Q

m
, µ

)
,

µ
d

dµ
Hm

(
m,

Q

m
, µ

)
= γHm

(Q

m
, µ

)
Hm

(
m,

Q

m
, µ

)
. (38) {hqetrunning}

Here the anomalous dimensions are γCm = −Z−1
Cm

µ d/dµ ZCm and γHm = γCm + γ∗
Cm

. We

write the solution

Hm(µ) = UHm(µ, µm)Hm(µm) , (39) {UHm}

which runs Hm to µ < µm. The local evolution contained in UHm is shown in Fig. 2.

Bottom-Up Running. Next consider the equivalent approach of operator renormalization

in bHQET. In this case we introduce Z-factors for B± and Shemi in the factorization theorem

rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =

∫
dŝ′ ZB±(ŝ−ŝ′) B±(ŝ′, µ) , (40) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±(ŝ− ŝ′) = δ(ŝ′′ − ŝ′). The renormalization group equations are

µ
d

dµ
B±(ŝ, µ) =

∫
dŝ′ γB±(ŝ−ŝ′) B±(ŝ′, µ), (41) {rgeB}

with anomalous dimension

γB±(s−s′) = −
∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±(ŝ′′−ŝ′) . (42)
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divergences involving Jµ
i . The SCET factorization theorem in Eq. (19) is generated by a

time-ordered product of two Jµ
i currents. The objects in Eq. (19) are all finite; it only involves

renormalized objects. The individual objects depend on the choice of renormalization scheme

in SCET, but this dependence cancels out between HQ, Jn, Jn̄, and S. The renormalization

group equation for C and HQ are

µ
d

dµ
C(Q, µ) = γc(Q, µ) C(Q,µ) , µ

d

dµ
HQ(Q,µ) = γHQ(Q, µ) HQ(Q,µ) , (29) {gammacgammaH}

where from Eq. (27) γc = −Z−1
c µd/dµ Zc, and since HQ = |C|2 we have γHQ = γc + γ∗

c . For

the solution to the RGE equation for HQ we write

HQ(Q,µ) = UHQ(µ, µh) HQ(Q,µh) , (30) {UH}

where µ < µh. The evolution contained in UH is shown in Fig. 2.

Bottom-Up Running. It is well known that there is an alternative but equivalent way to

renormalize composite operators like Jµ
i , which is often referred to as operator renormaliza-

tion (see Ref. [30] for a review). Rather than introducing a Z-factor for the C, we introduce

one for the current, (Jµ
i )bare = ZJJµ

i . The equivalence of the two approaches implies that

ZJ = Z−1
c . We consider a variant of this that instead introduces Z-factors for the objects Jn,

Jn̄, and S in the SCET factorization theorem, Eq. (19). In section IIA these objects were

defined by matrix elements of time-ordered products of fields, but note that each involves

only a subset of the fields in the current Jµ
i . To switch from bare to renormalized matrix

elements we write

Jbare
n (s) =

∫
ds′ ZJn(s−s′) Jn(s′, µ) , Jbare

n̄ (s̄) =

∫
ds′ ZJn̄(s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi("

+, "−) =

∫
d" ′+d" ′− ZS("+−" ′+, "−−" ′−) Shemi("

′+, " ′−, µ) , (31) {ZJJS}

where these equations can be inverted using
∫

ds Z−1
Jn

(s′′ − s)ZJn(s − s′) = δ(s′′ − s′) etc.

The renormalization group equations are

µ
d

dµ
Jn,n̄(s, µ) =

∫
ds′ γJn,n̄(s−s′) Jn,n̄(s′, µ), (32) {rgeJS}

µ
d

dµ
Shemi("

+, "−, µ) =

∫
d" ′+d" ′− γS("+−" ′+, "−−" ′−)Shemi("

′+, " ′−, µ) ,

where the anomalous dimensions are defined as

γJn,n̄(s−s′) = −
∫

ds′′ Z−1
Jn,n̄

(s−s′′)µ
d

dµ
ZJn,n̄(s′′−s′) , (33)

γS("+−" ′+, "−−" ′−) = −
∫

d"
′′+d"

′′−Z−1
S ("+−"

′′+, "−−"
′′−)µ

d

dµ
ZS("

′′+−" ′+, "
′′−−" ′−) ,
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 Anomalous Dimensions

Top Down:

Bottom Up:

a) b) c) d)

v+

v-

v+

v-

v+- n

n

FIG. 7: Nonzero one-loop vertex and wavefunction corrections in boosted HQET. Graphs a), b),
c) involve heavy quark fields hv± , while graph d) only involves the Wilson lines Y †

n and Yn̄. {bHQETloops}

In order to carry out the matching at NLO we calculate the graphs in Fig. 7. The

Feynman rules are given in appendix B, as are the results for the individual graphs. The

sum of the three vertex contributions, wavefunction counterterm, and residue is V7a + V7b +

Γµ
i (Zh − 1) + Γµ

i (Rh − 1). This gives

〈p, p̄|J µ
i |0〉 = Γµ

i⊥

[
1 +

αsCF

4π

(
2

ε
ln

m2

−Q2
+

2

ε

− ln2 µ2Q2

−∆4
+ 4 ln2 mµ

−∆2
+ 4 ln

mµ

−∆2
+ 4 +

π2

3

)]
. (81)

The UV divergences in the bHQET current are subtracted by the counterterm for the Wilson

coefficient

ZCm = 1− αsCF

4π

[
2

ε
ln

m2

−Q2
+

2

ε

]
(82) {ZCm1}

giving the renormalized bHQET amplitude. The presence of ln(m/Q)

Next, subtracting the renormalized current result, 〈p, p̄|ZCmJ
µ
i |0〉, from the SCET current

result in Eq. (48), we obtain the Wilson coefficient:

Cm(µm) = 1 +
αsCF

4π

(
ln2 µ2

m

m2
+ ln

µ2
m

m2
+ 4 +

π2

6

)
, (83)

and using Hm(m,µ) = |Cm(m, µ)|2 we get the final result for the matching coefficient

Hm(µm) = 1 +
αsCF

2π

(
ln2 µ2

m

m2
+ ln

µ2
m

m2
+ 4 +

π2

6

)
. (84)

At the scale µm ∼ m there are no large logarithms in the matching coefficient. The anoma-

lous dimensions can be obtained from ZCm to give

γCm(µ) = Z−1
Cm

(µ) µ
d

dµ
ZCm(µ) = −αsCF

π

[
ln
−Q2 − i0

m2
− 1

]

γHm(µ) = γCm(µ) + γCm(µ)∗ = −αsCF

π

[
2 ln

Q2

m2
− 2

]
. (85)
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a) b) c)

FIG. 8: bHQET graphs for the top-quark jet function. {forwardII}

The solution of the RG equation in Eq. (35) is straightforward and we find

UHm(µ, µm) =

[
αs(µ)

αs(µm)

](4CF /β0)(ln(Q2/m2)−1)

, (86) {hqetrun}

where Hm(m, µ) = UHm(µ, µm)Hm(m,µm) is given in Eq. (84). Note that the RGE solution

for Cm(m, µ) contains an extra phase

Cm(m,µ) =
√

Hm(m, µ)

[
αs(µ)

αs(µm)

]−2πi
CF
β0

, (87)

but this does not affect the physical cross-section.

B. bHQET Jet functions Matching and Running
{sect:bHQETJet}

Next we compute the bHQET jet functions defined in Eq. (18) perturbatively in αs. As

in the SCET section the results for B+ and B− are related by v+ ↔ v−. We determine the

bHQET jet function renormalization factor ZB, the jet anomalous dimension γB, and the

evolution kernel UB. We also compute the renormalized bHQET jet-functions which give

one-loop corrections to the Breit-Wigner distributions. By comparing this result with the

jet-functions in SCET we verify that the IR divergences agree, and that the same matching

coefficient Hm in Eq. (84) is reproduced.

At tree level the bHQET jet function are given by the discontinuity of the HQET prop-

agator which includes the width

Btree
+ (ŝ) = Disc

i

2πm

1

ŝ + iΓ
=

1

mπ

Γ

ŝ2 + Γ2
. (88)

At one loop the jet function is given by the discontinuities of the diagrams shown in Fig. (8).

Results for individual graphs are given in the appendix. The sum of graphs after taking the

discontinuity is

B8a + B8b + B8c = Disc
iαsCF

8π2m

1

ŝ + iΓ

{
2

ε2
+

4

ε
ln

(
µ

−ŝ− iΓ

)
+

2

ε

+4 ln2

(
µ

−ŝ− iΓ

)
+ 4 ln

(
µ

−ŝ− iΓ

)
+ 4 +

5π2

6

}
. (89)
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FIG. 6: Graphs for the hemisphere soft function at one-loop. In this figure the double solid lines
denote Y -Wilson lines,and the line with ticks is the final state cut. {softgraphs}

Eqs. (62,63) give the solution for the RG-evolution of the SCET jet function up to µ, via

Jn(s, µ) =
∫

ds′ UJn(s− s′, µ, µm)Jn(s′, µm).

Finally we return to the renormalized jet function. For the stable-top renormalized jet-

function at one-loop order this gives

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{
8

κ2
1

[
θ(x) ln(x)

x

]

+

− 4

κ2
1

[
1+ln

(m2

κ2
1

)
+ln

(µ2

κ2
1

)][
θ(x)

x

]

+

+ δ(s)

[
2 ln2

(µ2

κ2
1

)
+2 ln2

(m2

κ2
1

)
+3 ln

(µ2

κ2
1

)
+ln

(m2

κ2
1

)
+8−π2

3

]}
, (64) {Jren}

where x = s/κ2
1. From this result we can immediately see why further matching and RG-

evolution are needed to deal with the large hierarchy of scales in Jn. For s ∼ mΓ no

choice of µ minimizes all the large logarithms. The terms in which the large logs appear are

controlled by the choice of κ1, but no choice of κ1 removes them completely. For example,

with κ1 = m and µ = m we still have ln(x) ∼ ln(Γ/m); while for κ2
1 = mΓ and µ = κ1 we

have ln(m2/κ2
1) ∼ ln(Γ/m). This motivates the matching onto bHQET and RG-evolution

between m and Γ to be carried out below. For later convenience we quote the result for Jn

with the choice κ1 = m,

Jn(s, m, Γ = 0, µ) = δ(s) +
αsCF

4π

{
8

m2

[
θ(x) ln(x)

x

]

+

− 4

m2

[
1+ln

( µ2

m2

)][
θ(x)

x

]

+

+ δ(s)

[
2 ln2

( µ2

m2

)
+3 ln

( µ2

m2

)
+8−π2

3

]}
. (65) {Jrenm}

C. Hemisphere Soft Function and its Running
{sect:soft}

In this section we compute the renormalization group evolution of the hemisphere soft-

function, Shemi(&+, &−, µ). Although this function is non-perturbative, its dependence on the

scale µ can be computed in perturbation theory, and is the same as the µ-dependence of

Shemi defined with partonic matrix elements.

To compute Shemi we use the squared matrix-element expression in Eq. (13) involving the

states |Xs〉. At O(αs) the corresponding diagrams are shown in Fig. 6, where the double
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One Loop Graphs: bHQET Current

One Loop Graphs: bHQET Jet Function

One Loop Graphs: Soft Function

a) b) c) d)

v+

v-

v+

v-

v+- n

n

FIG. 7: Nonzero one-loop vertex and wavefunction corrections in boosted HQET. Graphs a), b),
c) involve heavy quark fields hv± , while graph d) only involves the Wilson lines Y †

n and Yn̄. {bHQETloops}

In order to carry out the matching at NLO we calculate the graphs in Fig. 7. The

Feynman rules are given in appendix B, as are the results for the individual graphs. The

sum of the three vertex contributions, wavefunction counterterm, and residue is V7a + V7b +

Γµ
i (Zh − 1) + Γµ

i (Rh − 1). This gives

〈p, p̄|J µ
i |0〉 = Γµ

i⊥

[
1 +

αsCF

4π

(
2

ε
ln

m2

−Q2
+

2

ε

− ln2 µ2Q2

−∆4
+ 4 ln2 mµ

−∆2
+ 4 ln

mµ

−∆2
+ 4 +

π2

3

)]
. (81)

The UV divergences in the bHQET current are subtracted by the counterterm for the Wilson

coefficient

ZCm = 1− αsCF

4π

[
2

ε
ln

m2

−Q2
+

2

ε

]
(82) {ZCm1}

giving the renormalized bHQET amplitude. The presence of ln(m/Q)

Next, subtracting the renormalized current result, 〈p, p̄|ZCmJ
µ
i |0〉, from the SCET current

result in Eq. (48), we obtain the Wilson coefficient:

Cm(µm) = 1 +
αsCF

4π

(
ln2 µ2

m

m2
+ ln

µ2
m

m2
+ 4 +

π2

6

)
, (83)

and using Hm(m,µ) = |Cm(m, µ)|2 we get the final result for the matching coefficient

Hm(µm) = 1 +
αsCF

2π

(
ln2 µ2

m

m2
+ ln

µ2
m

m2
+ 4 +

π2

6

)
. (84)

At the scale µm ∼ m there are no large logarithms in the matching coefficient. The anoma-

lous dimensions can be obtained from ZCm to give

γCm(µ) = Z−1
Cm

(µ) µ
d

dµ
ZCm(µ) = −αsCF

π

[
ln
−Q2 − i0

m2
− 1

]

γHm(µ) = γCm(µ) + γCm(µ)∗ = −αsCF

π

[
2 ln

Q2

m2
− 2

]
. (85)
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However, it is simpler to work with the one loop result before taking the discontinuity which

we denote by B. The bare expression for this quantity is given by

Bbare
± (ŝ) =

i

2πm

1

ŝ + iΓ

{
1 +

iαsCF

4π

[
2

ε2
+

4

ε
ln

(
µ

−ŝ− iΓ

)
+

2

ε

+4 ln2

(
µ

−ŝ− iΓ

)
+ 4 ln

(
µ

−ŝ− iΓ

)
+ 4 +

5π2

6

]}
. (90)

Taking the discontinuity of Bbare
± gives the bHQET jet function at one loop

Bbare
± (ŝ) =

1

πm

Γ

ŝ2 + Γ2

{
1 +

αsCF

4π

[
2

ε2
+

2

ε

(
ln

(
µ2

ŝ2 + Γ2

)
+

2ŝ

Γ
arctan

(
Γ

ŝ

))
+

2

ε

+ln2

(
µ2

ŝ2 + Γ2

)
+ 2 ln

(
µ2

ŝ2 + Γ2

)
− 4arctan2

(
Γ

ŝ

)

+4
ŝ

Γ
arctan

(
Γ

ŝ

)(
ln

(
µ2

ŝ2 + Γ2

)
+ 1

)
+ 4 +

5π2

6

]}
. (91)

The counterterm and bHQET matching coefficient can be obtained from either Eq. (90) or

Eq. (91). However the solution of the RGE is much simpler to obtain if we work with Bbare
± ,

which we will do from here on out. The counterterm which subtracts off the divergences

from either Eq. (90) or Eq. (91) when convoluted with the renormalized bHQET jet function

is

ZB±(ŝ− ŝ′) = δ(ŝ− ŝ′)+
αsCF

4π

{
δ(ŝ− ŝ′)

[
2

ε2
+

4

ε
ln

(
µ

κ3

)
+

2

ε

]
− 4

κ3ε

[
κ3θ(ŝ− ŝ′)

ŝ− ŝ′

]

+

}
. (92) {ZBp}

Note care must be taken when computing the integral in Eq. (37) when the plus function

above is convoluted with the tree-level Breit-Wigner. We have allowed for an arbitrary

rescaling of ŝ→ κ3 x. To determine the bHQET jet function Wilson coefficient at order αs

we need to match the one loop bHQET result to the one loop SCET result. Since we are

working with B± we can match to the SCET result before taking the discontinuity. At tree

level this is given by the collinear propagator, and at one loop the result is given by Eq. (57).

Since the top quark is stable in SCET we take the Γ→ 0 limit of Eq. (90) in the matching.

We obtain

T±(µ, m) = 1 +
αsCF

4π

(
ln2m2

µ2
− ln

m2

µ2
+ 4 +

π2

6

)
. (93)

The logarithms are minimized at the matching scale µ ≈ m.

Next we turn to the running of the bHQET jet function. The anomalous dimension

determined from Eq. (92) is

γB±(ŝ− ŝ′, µ) =
αsCF

π

{
2

[
κ3θ(ŝ′ − ŝ)

ŝ′ − ŝ

]

+

−
[
2ln

(
µ

κ3

)
+ 1

]
δ(s′ − s)

}
(94)
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lines denote the four Y -Wilson lines. Fig. 6a,b are virtual graphs with |Xs〉 = |0〉, while

Fig. 6b,c are real emission graphs with a one-gluon state, |Xs〉 = |εA
µ 〉. Results for the

graphs are summarized in Eq. (A11) of Appendix A, and together with the tree-level matrix

element give

Sbare
hemi("

+, "−) = δ("+)δ("−) (66) {softsum}

+
CF αs

π

eεγE

ε Γ(1−ε)

µ2ε

κ2ε
2

[
δ("−)θ("+)

κ2

(κ2

"+

)1+2ε

+
δ("+)θ("−)

κ2

(κ2

"−

)1+2ε
]
.

Sbare
hemi("

+, "−) is independent of the mass scale κ2 > 0 we introduced here. However κ2

facilitates using the standard distribution relation for dimensionless variables

θ(x)

x1+2ε
= −δ(x)

2ε
+

[θ(x)

x

]

+
− 2ε

[θ(x) ln x

x

]

+
+ O(ε2) , (67)

to give

Sbare
hemi("

+, "−) = δ("+)δ("−) +
CF αs

π

{
− δ("+)δ("−)

ε2
+

δ("−)

ε κ2

[κ2θ("+)

"+

]

+
+

δ("+)

ε κ2

[κ2θ("−)

"−

]

+

− δ("+)δ("−)

ε
ln

(µ2

κ2
2

)
+G("+, "−)

}
, (68) {softsum2}

where G("+, "−) contains the finite terms

G("+, "−) =
1

2
δ("+)δ("−)

[π2

6
−ln2

(µ2

κ2
2

)]
+

δ("−)

κ2
ln

(µ2

κ2
2

)[κ2θ("+)

"+

]

+
(69)

+
δ("+)

κ2
ln

(µ2

κ2
2

)[κ2θ("−)

"−

]

+
− 2δ("−)

κ2

[θ("+) ln("+/κ2)

"+/κ2

]

+
− 2δ("+)

κ2

[θ("−) ln("−/κ2)

"−/κ2

]

+

}
.

To renormalize Sbare
hemi we define the soft counterterm

Zs("
′+−"+, " ′−−"−) = δ("+−" ′+)δ("−−" ′−)− CF αs

π

{
δ("+−" ′+)δ("−−" ′−)

ε2
(70) {Zs}

− δ("−−" ′−)

ε κ2

[
κ2θ("+−" ′+)

"+−" ′+

]

+

− δ("+−" ′+)

ε κ2

[
κ2θ("−−" ′−)

"−−" ′−

]

+

+
δ("+−" ′+)δ("−−" ′−)

ε
ln

(µ2

κ2
2

)}
,

leaving the renormalized soft-function

Shemi("
+, "−) = δ("+)δ("−) +

CF αs

π
G("+, "−) . (71) {Sren}

We caution that the soft-function is sensitive to non-perturbative effects, so the perturbative

quark-level result in Eq. (71) should not be used. Nevertheless, from Zs we can compute

the anomalous dimension

γS("+, "−) = δ("−)γs("
+) + δ("+)γs("

−) ,

γs("
±) =

2CF αs

π

{
1

κ2

[κ2θ("±)

"±

]

+
−δ("±) ln

( µ

κ2

)}
, (72) {gammaS}
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leaving the renormalized soft-function

Shemi("
+, "−) = δ("+)δ("−) +
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π
G("+, "−) . (71) {Sren}

We caution that the soft-function is sensitive to non-perturbative effects, so the perturbative

quark-level result in Eq. (71) should not be used. Nevertheless, from Zs we can compute

the anomalous dimension
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−) ,

γs("
±) =

2CF αs

π

{
1

κ2

[κ2θ("±)

"±

]

+
−δ("±) ln

( µ

κ2

)}
, (72) {gammaS}

22



Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm +γ∗
Cm

. We write

the solution

Hm(µ) = UHm(µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm. The local evolution contained in UHm is shown in Fig. 2.

Bottom-Up Running. Next consider the equivalent approach of operator renormalization

in bHQET. In this case we introduce Z-factors for B± and Shemi in the factorization theorem

rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =

∫
dŝ′ ZB±(ŝ−ŝ′) B±(ŝ′, µ) , (37) {ZB}

where
∫

dŝ Z−1
B±

(ŝ′′ − ŝ)ZB±(ŝ− ŝ′) = δ(ŝ′′ − ŝ′). The renormalization group equations are

µ
d

dµ
B±(ŝ, µ) =

∫
dŝ′ γB±(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±(s−s′) = −
∫

dŝ′′ Z−1
B±

(ŝ−ŝ′′) µ
d

dµ
ZB±(ŝ′′−ŝ′) . (39)

For the solutions to the RGE we write

B±(ŝ, µ) =

∫
dŝ′ UB±(ŝ−ŝ′, µ, µΓ) B±(ŝ′, µΓ) . (40) {UB}

The evolution kernels UB± take us from the low-scale µΓ to a large scale µ as shown in Fig. 2.

Consistency Conditions. Just like in SCET, the use of ZB± and ZS correspond to includ-

ing counterterms for the individual bHQET Feynman diagrams for each of B+, B−, and S.

If we instead use ZCm then a finite result is only obtained when the current counterterm

graphs are added to the sum of all graphs for the factorization theorem at some order in

αs. Again there are consistency conditions which are derived in the same was as in SCET.

To derive it we start with Eq. (12) and switch to Jbare
n , Jbare

n̄ , and Sbare using first top-down

renormalization, and then bottom-up renormalization. Equating the results we find the

bHQET consistency condition

|ZCm|2 δ
(
ŝ−Q$ ′+

m

)
δ
(
ˆ̄s−Q$ ′−

m

)
=

∫
d$+d$− Z−1

B+

(
ŝ−Q$+

m

)
Z−1

B−

(
ˆ̄s−Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolution kernels the condition is

UHm(µ, µ∆) δ
(
ŝ−Q$ ′+

m

)
δ
(
ˆ̄s−Q$ ′−

m

)
(42) {cons4}

=

∫
d$+d$− UB+

(
ŝ−Q$+

m
, µ, µ∆

)
UB−

(
s̄−Q$−

m
, µ, µ∆

)
US($+−$ ′+, $−−$ ′−, µ, µ∆) .
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defined by matrix elements of time-ordered products of fields, but note that each involves

only a subset of the fields in the current Jµ
i . To switch from bare to renormalized matrix

elements we write

Jbare
n (s) =

∫
ds′ ZJn(s−s′) Jn(s′, µ) , Jbare

n̄ (s̄) =

∫
ds′ ZJn̄(s̄−s̄′) Jn̄(s̄′, µ) ,

Sbare
hemi(!

+, !−) =

∫
d! ′+d! ′− ZS(!+−! ′+, !−−! ′−) Shemi(!

′+, ! ′−, µ) , (28) {ZJJS}

where these equations can be inverted using
∫

ds Z−1
Jn

(s′′ − s)ZJn(s − s′) = δ(s′′ − s′) etc.

The renormalization group equations are

µ
d

dµ
Jn,n̄(s, µ) =

∫
ds′ γJn,n̄(s−s′) Jn,n̄(s′, µ), (29) {rgeJS}

µ
d

dµ
S(!+, !−, µ) =

∫
d! ′+d! ′− γS(!+−! ′+, !−−! ′−)S(! ′+, ! ′−, µ) ,

where the anomalous dimensions are defined as

γJn,n̄(s−s′) = −
∫

ds′′ Z−1
Jn,n̄

(s−s′′)µ
d

dµ
ZJn,n̄(s′′−s′) , (30)

γS(!+−! ′+, !−−! ′−) = −
∫

d!
′′+d!

′′−Z−1
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Bottom-Up Running. Next consider the equivalent approach of operator renormalization

in bHQET. In this case we introduce Z-factors for B± and Shemi in the factorization theorem

rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =
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dŝ Z−1
B±
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d

dµ
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(
ŝ−Q$ ′+

m

)
δ
(
ˆ̄s−Q$ ′−

m

)
=

∫
d$+d$− Z−1

B+

(
ŝ−Q$+

m

)
Z−1

B−

(
ˆ̄s−Q$−

m

)

× Z−1
S ($+−$ ′+, $−−$ ′−) . (41) {cons3}

In terms of evolution kernels the condition is

UHm(µ, µ∆) δ
(
ŝ−Q$ ′+

m

)
δ
(
ˆ̄s−Q$ ′−

m

)
(42) {cons4}

=

∫
d$+d$− UB+

(
ŝ−Q$+

m
, µ, µ∆

)
UB−

(
s̄−Q$−

m
, µ, µ∆

)
US($+−$ ′+, $−−$ ′−, µ, µ∆) .

15

Evolution

Top Down

Bottom Up

Here the anomalous dimensions are γCm = Z−1
Cm

µ d/dµ ZCm and γHm = γCm +γ∗
Cm

. We write

the solution

Hm(µ) = UHm(µ, µm)Hm(µm) , (36) {UHm}

which runs Hm to µ < µm. The local evolution contained in UHm is shown in Fig. 2.

Bottom-Up Running. Next consider the equivalent approach of operator renormalization

in bHQET. In this case we introduce Z-factors for B± and Shemi in the factorization theorem

rather than ZCm . The equations for the soft-function S are exactly the same as those in

SCET, and will not be repeated. To switch from bare to renormalized HQET jet matrix

elements we write

Bbare
± (ŝ) =
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dŝ′ γB±(ŝ−ŝ′) B±(ŝ′, µ), (38) {rgeB}

with anomalous dimension

γB±(s−s′) = −
∫
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Consistency of top down & bottom up



Top Down 
Running

Bottom Up 
Running

Q
Scales

m

P̂+
a projects out the total +-momentum of soft particles in hemisphere-a (and P̂−b the −-

momentum in hemisphere-b). The same function Shemi appears in event shapes for massless

two-jet production [14, 15, 16]. In Ref. [1] it was shown that S(!+, !−) is not affected by

the top-quark width, nor by passing below the top-quark mass scale. The form with the

time ordered products will be useful for our computations. The one-loop renormalization

of 〈0|Y n̄Yn|Xs〉 was carried out in Ref. [24]. However, this can not be directly connected to

the RGE for Shemi, because the formula that connects the renormalization of the squared

matrix element to that for Shemi diverges as discussed in Ref. [25], where the RGE for Shemi

is derived.

Matrix elements of top-quark collinear fields in SCET give jet functions Jn for the top-

quark jet, and Jn̄ for the antitop jet,

Jn(Qr+
n − m2) =

−1

8πNcQ

∫
d4x eirn·x Disc

[
tr 〈0|T{χn,Q(x)/̄nχn(0)}|0〉

]
,

Jn̄(Qr−n̄ − m2) =
−1

8πNcQ

∫
d4x eirn̄·x Disc

[
tr 〈0|T{χn̄,−Q(x)/nχn̄(0)}|0〉

]
, (18) {jetfunc2}

where the tr is over color and spin indices and Nc = 3 is the number of colors. These jet

functions Jn and Jn̄ depend on both the mass and width of the top-quarks, and at this stage

the LO SCET factorization theorem is
(

dσ

dst dst̄

)

hemi

= σ0 HQ(Q,µ)

∫
d!+d!−Jn(st − Q!+, m, Γ, µ) Jn̄(st̄ − Q!−, m, Γ, µ)Shemi(!

+, !−, µ),

(19) {SFactThm}

which is similar to massless jets.

The Jn and Jn̄ functions can be factorized further by matching onto boosted HQET

(bHQET) jet functions B±. We work with a definition of st and st̄ that is not sensitive to

fluctuations at m, so that we have the same definition in SCET and bHQET. In this case

the jet functions matching takes the simple form [1]

Jn(st, m, Γ, µ) = T+(m, µ)B+(ŝt, Γ, µ) + O
( Γ

m

)
+ O

( ŝt

m

)
,

Jn̄(st̄, m, Γ, µ) = T−(m, µ)B−(ŝt̄, Γ, µ) + O
( Γ

m

)
+ O

( ŝt̄

m

)
. (20) {BFactThm}

Although not written explicitly, T± also depend on the ratio Q/m = n̄ · v+ = n · v− through

their anomalous dimensions. With ŝt and ŝt̄ held fixed the HQET jet functions B+ and B−
are independent of the top-quark mass, but still depend on the top-quark width. They are

defined by matrix elements of fields in boosted HQET

B+(2v+ ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v+(x)Wn(x)W †

n(0)hv+(0)}|0〉 ,

B−(2v− ·r) =
−1

4πNcm

∫
d4x eir·x Disc

[
tr 〈0|T{h̄v−(x)Wn̄(x)W †

n̄(0)hv−(0)}|0〉 , (21)
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( Γ

m

)
+ O

( ŝt̄
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defined by matrix elements of fields in boosted HQET
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∫
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[
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Local 
Running

Convolution 
Running

• Pair production of W+W−: The treatment of pair production of unstable fermions

can be adapted to describe the production of vector bosons allowing us to describe the

pair production of W+W− gauge bosons.

• Production of new exotic unstable particles: The formalism can be used to describe
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The two jet cross section σ(e+e− → γ∗, Z∗ → jt jt̄) can be written as

σ =
res.∑

X

(2π)4 δ4(q − pX)
∑

i=a,v

Li
µν 〈0|J

†ν
j (0)|X〉〈X|J µ

i (0)|0〉 , (7)

where q = pe− + pe+ , and q2 = Q2. This result is to all orders in the QCD coupling but

lowest order in the electro-weak interactons. The superscript res. on the summation symbol

denotes a restriction on the sum over final states X, to give two-jets plus soft hadrons,

J(t)J(t̄)Xs. These final states contain top and anti-top jets with invariant masses close

to the top quark mass, plus soft emission between the jets. The explicit form of these

restrictions depends on the specific jet invariant mass definitions used, as described below.

In Eq. (7) the parity conserving leptonic tensor Li
µν is summed over vector and axial parts,

i = v or a, and includes photon and Z boson exchange. The QCD top-quark currents are

denoted J µ
i = ψ̄(x)Γµ

i ψ(x), where we have vector and axial currents J µ
v (x) = ψ̄(x)γµψ(x)

and J µ
a (x) = ψ̄(x)γµγ5ψ(x).

In a companion publication [1] we have derived the following factorization theorem for

the invariant mass distribution of the two jet cross section
(

dσ

dst dst̄
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= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)

×
∫

d&+d&−B+

(
ŝt −

Q&+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q&−

m
, Γ, µ

)
Shemi(&

+, &−, µ)

+O
(mαs(m)

Q

)
+ O

( Γ
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)
+ O

(st, st̄

m2

)
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Equivalence of Top-Down vs. Bottom Up

•Running between the different scales only affects only the normalization!



Short Distance Mass for Jets



a) b)

FIG. 5: Tree level top-quark jet functions in a) SCET and b) bHQET. {fig:Bjet}

graphs in Fig. 5 which have a trace over spin and color indices. This gives for Γ = 0 and in

the pole mass scheme

BΓ=0
+ (ŝ) =

−1

4πNcm
(−Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1. Plugging Eq. (87) into Eq. (81), the final form for differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)
(90) {bHQETcross-hem}

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ) ,

where we still have HQ(Q, µ) = |C(Q, µ)|2 and the soft function

Shemi($
+, $−, µ) =

1

Nc

∑

Xs

δ($+ − k+a
s )δ($− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (91)

Note that Eq. (90) depends on two renormalization scales, µm and µ. The matching scale

µm ∼ m was the endpoint of the evolution of the hard function HQ(Q, µm). From the

matching at m we get the dependence on µm in Hm, and from running below m we get

in addition a dependence on µ which cancels against dependence on µ in the bHQET jet

functions and the soft function.

So to sum the remaining large logarithms we have in principle two choices. We can either

run the Wilson coefficient Hm of we run the individual functions B± and S. The first option

essentially corresponds to running the bHQET top pair production current of Eq. (33), and

we will call this method “top-down”. The relation

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm)UHm(µm, µ) (92)

defines the corresponding evolution factor UHm that is shown in Fig. 4. The second option

means running the jet functions B± and the soft function Shemi independently with the

evolution factors UB±(µ, µm) and US(µ, µm) respectively, as is also illustrated in Fig. 4. This

running involves convolutions, such as

µ
d

dµ
B+(ŝ, µ) =

∫
dŝ′ γB+(ŝ− ŝ′) B+(ŝ′, µ) ,

B+(ŝ, µm) =

∫
dŝ′ UB+(ŝ− ŝ′, µm, µ) B+(ŝ′, µ) , (93) {Brun}
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•We have an analytic formula for the double differential jet invariant mass 
distribution in terms of the pole mass.

•We can now switch to a short distance mass scheme in bHQET.

an artificially enhanced sensitivity to small momenta in Feynman diagrams (see Ref. [65] for

a review) and, as a consequence, to artificially large perturbative corrections. This behavior

is particularly important for observables that have a strong dependence on the heavy quark

mass [53, 54, 55, 56]. From a nonperturbative point of view, this feature is related to an

intrinsic ambiguity in the heavy quark pole mass parameter of order the hadronization scale

ΛQCD, and is sometimes referred to as the O(ΛQCD)-renormalon problem of the pole mass.

Heavy quark mass definitions that do not have such an O(ΛQCD) ambiguity are called short-

distance mass schemes.5 In the factorization formulae in Eq. (90), the top-mass appears in

the hard function Hm and in the two jet functions B+(ŝt) and B−(ŝt̄). The most important

sensitivity to the top-mass scheme is in ŝt = (M2
t −m2)/m and ŝt̄ = (M2

t̄ −m2)/m, where

M2
t and M2

t̄ are scheme independent observables.

A specific short-distance top quark mass scheme “m” can be defined by a finite residual

mass term δm "= 0, as

mpole = m + δm , (93)

where δm starts at O(αs) or higher, and must be strictly expanded perturbatively to the

same order as other O(αs) corrections. (This strict expansion does not apply to powers of

αs times logs that are summed up by renormalization group improved perturbation theory.)

Let B+(ŝ, µ, δm) denote the jet-function in the short-distance mass scheme specified by

δm. We can calculate B+(ŝ, µ, δm) in two equivalent ways. i) Use the pole-mass scheme

initially by setting δm = 0 in Eq. (31). In this case the mass-dependence appears in

ŝpole = (M2 −m2
pole)/mpole in B+ and we change the scheme with Eq. (93). Alternatively,

ii) treat δm "= 0 in Eq. (31) as a vertex in Feynman diagrams, and take ŝ to be defined in

the short-distance mass scheme right from the start, so ŝ = (M 2 −m2)/m.

As discussed in Sec. II B, it is necessary that the residual mass term is consistent with

the bHQET power counting, i.e.

δm ∼ ŝt ∼ ŝt̄ ∼ Γ . (94)

Eq. (94) restricts us to a suitable class of short-distance mass schemes for jets. In any short-

distance mass scheme which violates Eq. (94) the EFT expansion breaks down, and thus

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm $ 8 GeV% Γ, or parametrically δm ∼ αsm% Γ. Using Eq. (92)

and converting to the MS scheme with the O(αs) residual mass term we have

B+(ŝ, µ, δm ) =
1

πm

{
Γ

[ (M2
t −m2)2

m2 + Γ2
] +

(4 ŝΓ) δm
[ (M2

t −m2)2

m2 + Γ2
]2

}
. (95)

5 In practice, determining the pole mass from the analysis of experimental data leads to values that depend
strongly on the order of perturbation theory that has been employed for the theoretical predictions. This
makes the treatment of theoretical errors difficult.
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Connecting the Observable to a Short Distance Mass Scheme



although any value ∆ > ΛQCD can be considered. So we must switch from SCET onto these

HQET theories, and also consider what happens to the decay interaction in Eq. (29). We

describe the boosted HQET theories in detail in the next section, and we also discuss how

the soft cross-talk interactions remains active when the fluctuations at the top mass scale

m are integrated out.

Since the above Lagrangians and currents are LO in λ, it is natural to ask about the role

power corrections. As it turns out, higher order Lagrangians and currents give corrections

to our analysis at O(αsm/Q), O(∆/Q), O(m2/Q2), or O(Γ/m). The absence of O(m/Q)

implies that the m/Q expansion does not significantly modify the top-mass determination.

The leading action contains all m/Q corrections that do not involve an additional perturba-

tive gluon, so the corrections are O(αsm/Q). Furthermore, many of the higher order m/Q

corrections have the form of normalization corrections, and thus do not change the shape of

the invariant mass distribution. Subleading soft interactions are O(∆/Q). The interplay of

our hemisphere invariant mass variable with the top decay can induce O(m2/Q2) corrections,

as we discuss later on. Finally there will be power corrections of O(Γ/m) in bHQET.

B. Boosted HQET with Unstable Particles and Soft Cross-Talk

Boosted Heavy Quarks. HQET [36, 37, 38, 39, 40] is an effective theory describing the

interactions of a heavy quark with soft degrees of freedom, and also plays a crucial role for

jets initiated by massive unstable particles in the peak regions close to the heavy particles

mass shell. The momentum of a heavy quark interacting with soft degrees of freedom can

be written as

pµ = mvµ + kµ, (30)

where kµ denotes momentum fluctuations due to interactions with the soft degrees of freedom

and is much smaller than the heavy quark mass |kµ| ! m. Also typically vµ ∼ 1 so that we

are parametrically close to the top quark quark rest-frame, vµ = (1,#0).

In the top-quark rest frame, kµ ∼ Γ ! m, and refers to momentum fluctuations of the

top due to interactions with gluons collinear to its direction which preserve the invariant

mass conditions ŝt, ŝt̄ ∼ Γ ! m. For our top-quark analysis, the center of mass frame is

the most convenient to setup the degrees of freedom. In this frame the gluons collinear

to the top-quark which preserve the invariant mass condition will be called ultra-collinear

(ucollinear) in the n direction. A different set of n̄-ucollinear gluons interact with the antitop

quark which moves in the n̄ direction. The leading order Lagrangian of the EFT describing

the evolution and decay of the top or antitop close to it’s mass shell is given by

L+ = h̄v+

(

iv+ · D+ − δm +
i

2
Γ
)

hv+
, L− = h̄v−

(

iv− · D− − δm +
i

2
Γ
)

hv− , (31)
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Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

5 In practice, determining the pole mass from the analysis of experimental data leads to values that depend

strongly on the order of perturbation theory that has been employed for the theoretical predictions. This

makes the treatment of theoretical errors difficult.
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δm ∼ ŝt ∼ ŝt̄ ∼ Γ . (94)

Eq. (94) restricts us to a suitable class of short-distance mass schemes for jets. In any short-

distance mass scheme which violates Eq. (94) the EFT expansion breaks down, and thus

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole −m = δm. Here δm $ 8 GeV % Γ, or parametrically δm ∼ αsm % Γ. Using Eq. (92)

and converting to the MS scheme with the O(αs) residual mass term we have
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scheme: 

Switching Mass Schemes in bHQET

•We need a short distance mass that respects the power counting of bHQET. 

Top HQET Anti-Top HQET



Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

determination that relies on the reconstruction of the peak position of an invariant mass

distribution.

To define a short distance scheme for jet reconstruction measurements, mJ , we choose the

residual mass term δmJ such that, order-by-order, the jet functions B± have their maximum

at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to

dB+(ŝ, µ, δmJ)

dŝ

∣∣∣∣
ŝ=0

= 0 . (96)

We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in

principle be made.

To simplify the notation we will use the notation B̃+(ŝ, µ) for the bHQET jet-function

in the jet-mass scheme. At next-to-leading order in αs,

B̃+

(
ŝt −

Q#+

mJ
, µ

)
= B+

(
ŝ− Q#+

mJ
, µ

)
+

1

πmJ

(4 ŝΓ) δmJ

(ŝ2 + Γ2)2
, (97)

where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [60]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln

(µ

Γ

)
+

3

2

]
. (98)

For µ = Γ we have δmJ # 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (98) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [12], where δm ∼ α2
sm ∼ 2 GeV is of

order the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold

mass schemes [54, 55] δm is proportional to a cutoff scale that could in principle be adapted

such that they are numerically close to the jet-mass we are proposing. A detailed discussion

on the impact of switching from the pole to the jet-mass scheme at the one-loop level and at

higher orders will be given in Refs. [60] and [66], respectively. We remark that many other

schemes satisfying Eq. (94) can in principle be defined, but the existence of one such scheme

suffices.
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at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to
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FIG. 10: Perturbative shifts in peak position for the pole and jet mass schemes. The peak position
is stable in the jet mass scheme. {fig:shortmass}

define resummed jet masses where one applies the condition of Eq.(104) to the LL, NLL,

etc. resummed jet bHQET jet functions. Including such higher order effects will further

improve the perturbative stability of the peak position.

The perturbative behavior of the peak position determined by the bHQET jet functions in

the pole and jet mass schemes are shown in Fig. 10. We see that while the peak position shifts

in the pole mass scheme it remains stable in the jet mass scheme. As a result, experimentally

one will be sensitive to the jet mass. Once this jet mass is extracted from experiment it can

be related to the more familiar pole mass via Eq.(102) or any other mass scheme such as

the MSbar mass through it’s well known perturbative relation to the pole mass.

VII. CONCLUSION
{sect:conclusion}

In ref [2], we introduced an EFT formalism that allows one to extract the top mass to

high precision from jet invariant mass distributions in a linear collider environment. We

studied the production of high energy top jets in the dijet region through the parton level

process e+e− → tt̄. The EFT formalism allows us to give detailed predictions for the

double differential jet invariant mass distribution in the peak region where the top and

antitop are produced close to their mass shell. More importantly, we established a clear and

well defined relation between the Lagrangian top mass parameter m and the observed jet

invariant mass distribution. This was done by matching and running through a sequence of

effective field theories: QCD → SCET → boosted unstable HQET. In ref [2], we focused

on the construction and development of the formalism leaving out detailed computations

beyond tree level.

In this paper, we have bridged the gap and provided detailed calculations at the one

loop level. We have provided one loop matching and anomalous dimension calculations,

performed leading log resummations, defined an appropriate short distance top mass scheme,

and quantitatively explored the properties of the jet invariant mass distributions and their

sensitivity to the top mass. The top mass is shown to be sensitive to the peak position of
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Short Distance Top Jet Mass
•Define the short distance top jet mass 
scheme as:

•In the jet mass scheme the NLO jet function 
is modified as:

•At NLO the jet mass is related to the pole mass scheme as follows:

the notion of a top-quark Breit Wigner distribution becomes invalid. The most prominent

example for an excluded short-distance mass scheme is the MS mass scheme, m, for which

mpole−m = δm. Here δm " 8 GeV # Γ, or parametrically δm ∼ αsm# Γ. Using Eq. (95)

and converting to the MS scheme with the O(αs) residual mass term we have

B+(ŝ, µ, δm ) =
1

πm

{
Γ

[ (M2
t −m2)2

m2 + Γ2
] +

(4 ŝ Γ) δm
[ (M2

t −m2)2

m2 + Γ2
]2

}
. (95)

Here the first term is ∼ 1/(mΓ) and is swamped by the second term ∼ αs/Γ2, which is

supposed to be a perturbative correction. This means that it is not the MS mass that is

ever directly measured from any reconstruction mass-measurement that uses a top Breit-

Wigner at some level of the analysis. We stress that this statement applies to any top mass

determination that relies on the reconstruction of the peak position of an invariant mass

distribution.

To define a short distance scheme for jet reconstruction measurements, mJ , we choose the

residual mass term δmJ such that, order-by-order, the jet functions B± have their maximum

at ŝt = ŝt̄ = 0, where B+(ŝ) is the gauge invariant function defined in Eq. (84). So order-

by-order in perturbation theory the definition is given by the solution to

dB+(ŝ, µ, δmJ)

dŝ
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ŝ=0

= 0 . (96)

We call this mass definition the top quark jet-mass, mJ(µ) = mpole−δmJ . Since the bHQET

jet functions have a nonvanishing anomalous dimension, the top jet-mass depends on the

renormalization scale µ, at which the jet functions are computed perturbatively. Thus the

jet-mass is a running mass, similar to the MS mass, and different choices for µ ∼ Γ can in

principle be made.

To simplify the notation we will use the notation B̃±(ŝ, µ) for the bHQET jet-functions

in the jet-mass scheme. At next-to-leading order in αs,

B̃±(ŝ, µ) = B±(ŝ, µ) +
1

πmJ

(4 ŝ Γ) δmJ

(ŝ2 + Γ2)2
, (97)

where mJ = mJ(µ) and B+ is the pole-mass jet function to O(αs). Here we dropped all

corrections that are power suppressed by Γ/m. The one-loop relation between the pole and

jet-mass is [? ]

mJ(µ) = mpole − Γ
αs(µ)

3

[
ln

(µ

Γ

)
+

3

2

]
. (98)

For µ = Γ we have δmJ " 0.26 GeV, so the jet-mass is quite close to the one-loop pole mass.

Equation (??) also shows that the jet-mass is substantially different from the short-distance

masses that are employed for tt̄-threshold analyses [9], where δm ∼ α2
sm ∼ 2 GeV is of order

the binding energy of the tt̄ quasi-bound state. Nevertheless, in some of the threshold mass
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• Jet functions are Breit Wigner distributions at tree level:
Jet and Soft Functions
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FIG. 5: Tree level top-quark jet functions in a) SCET and b) bHQET. {fig:Bjet}

graphs in Fig. 5 which have a trace over spin and color indices. This gives for Γ = 0 and in

the pole mass scheme

BΓ=0
+ (ŝ) =

−1

4πNcm
(−Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1. Plugging Eq. (87) into Eq. (81), the final form for differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)
(90) {bHQETcross-hem}

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ) ,

where we still have HQ(Q, µ) = |C(Q, µ)|2 and the soft function

Shemi($
+, $−, µ) =

1

Nc

∑

Xs

δ($+ − k+a
s )δ($− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (91)

Note that Eq. (90) depends on two renormalization scales, µm and µ. The matching scale

µm ∼ m was the endpoint of the evolution of the hard function HQ(Q, µm). From the

matching at m we get the dependence on µm in Hm, and from running below m we get

in addition a dependence on µ which cancels against dependence on µ in the bHQET jet

functions and the soft function.

So to sum the remaining large logarithms we have in principle two choices. We can either

run the Wilson coefficient Hm of we run the individual functions B± and S. The first option

essentially corresponds to running the bHQET top pair production current of Eq. (33), and

we will call this method “top-down”. The relation

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm)UHm(µm, µ) (92)

defines the corresponding evolution factor UHm that is shown in Fig. 4. The second option

means running the jet functions B± and the soft function Shemi independently with the

evolution factors UB±(µ, µm) and US(µ, µm) respectively, as is also illustrated in Fig. 4. This

running involves convolutions, such as

µ
d

dµ
B+(ŝ, µ) =

∫
dŝ′ γB+(ŝ− ŝ′) B+(ŝ′, µ) ,

B+(ŝ, µm) =

∫
dŝ′ UB+(ŝ− ŝ′, µm, µ) B+(ŝ′, µ) , (93) {Brun}
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+ (ŝ) =

−1

4πNcm
(−Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
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Eq. (90) is our final result in terms of the pole mass m. The analogous result for a short

distance mass is given in the next section. Here Hm(m, Q/m, µm, µ) is the hard coefficient

Hm(m, µm) run down from µm to µ, and we still have HQ(Q, µm) = |C(Q, µm)|2, and the

soft function with Wilson lines evaluated at x = 0,

Shemi(!
+, !−, µ) =

1

Nc

∑

Xs

δ(!+−k+a
s )δ(!−−k−b

s )〈0|(Y n̄)ca′

(Yn)
cb′|Xs〉〈Xs|(Y †

n )b′c′(Y
†

n̄)a′c′|0〉 .

(91)

For completeness we wrote out the color indices from Eq. (50). Its interesting to note that

in the result in Eq. (90) the the final matrix elements only involve Wilson lines (since the

coupling of gluons to a heavy quark field hv+
in B+ is the same as to a Wilson line Wv+

).

To conclude this section we finally repeat the computation of the tree level bHQET

jet functions, but now for the realistic case with Γ $= 0 in the HQET propagators. The

computation is done at a scale µ % Γ, but the µ dependence does not show up at tree level.

Fig. 6b gives

Btree
± (ŝ, Γ) =

−1

8πNcm
(−2Nc) Disc

( i

v± · k + iΓ/2

)

=
1

4πm
Im

( −2

v± · k + iΓ/2

)

=
1

πm

Γ

ŝ2 + Γ2
. (92)

Thus we see that B±(ŝ) are equal to Breit-Wigners at lowest order in αs. At higher orders

in perturbation theory the width will cut off the IR divergences that would otherwise occur

at ŝ = 0. The functions B± at the scale µΓ can therefore be computed perturbatively

to any desired order in αs. In general the perturbative “matching” corrections will lead

to distortions of the tree-level Breit-Wigner distributions shown in Eq. (92), as does the

potential separate running between µ∆ and µΓ discussed below in section IIIH.

G. A Short-Distance Top-Mass for Jets

The derivation of the factorization formulae (90) in the previous section was given in the

pole mass scheme4, mpole. It is, however, well known that the pole mass definition leads to

an artificially enhanced sensitivity to small momenta in Feynman diagrams (see Ref. [63] for

a review) and, as a consequence, to artificially large perturbative corrections. This behavior

is particularly important for observables that have a strong dependence on the heavy quark

mass [52, 53, 54, 55]. From a nonperturbative point of view, this feature is related to an

intrinsic ambiguity in the heavy quark pole mass parameter of order the hadronization scale

ΛQCD, and is sometimes referred to as the O(ΛQCD)-renormalon problem of the pole mass.

4 In Eq. (90) we used m for the pole mass, but in this section we write mpole, and reserve “m” for a generic

mass-scheme.
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In terms of Mt and Mt̄ the variables ŝt,t̄ are

ŝt = 2Mt − 2mJ , ŝt̄ = 2Mt̄ − 2mJ , (112)

up to small Γ/m power corrections. In Eqs. (110-112) the jet hemisphere invariant masses

are Mt and Mt̄ and the short-distance top-quark mass that we wish to measure is mJ . In

d2σ/dMtdMt̄ the function F dominates the spectrum, while 4MtMt̄ σH
0 /(mJΓ)2 acts as a

normalization constant (since MtMt̄ is essentially constant in the peak region of interest). A

measurement of the normalization is not optimal for determining mJ ; it only has logarithmic

dependence on the short-distance mass, and has larger theoretical uncertainties. On the

other hand, the spectrum is very sensitive to mJ , so henceforth we focus on F (Mt, Mt̄, µ).

From Eq. (111) F is given by the convolution of the computable B̃± functions, with a

non-perturbative hemisphere soft-function, Shemi, that describes soft final-state radiation.

The majority of the important features of Eq. (111) can be explained without discussing

perturbative corrections, so we focus here on the leading order result. From Eq. (92), B̃±
are simply Breit-Wigner’s at leading order,

B̃+(ŝt) =
1

π(mJΓ)

1

(ŝt/Γ)2 + 1
, B̃−(ŝt̄) =

1

π(mJΓ)

1

(ŝt̄/Γ)2 + 1
. (113)

For our numerical analysis we use the two-loop standard model prediction for the top-width

Γ = 1.43 GeV [67] and we take the short distance jet-mass to be fixed at mJ = 172 GeV. As

demonstrated in Secs. II and III, Shemi is the same function that controls the soft radiation

for massless dijets, which was studied in Refs. [28, 29, 50]. Hence, it is convenient for our

analysis to adopt the model used to fit the massless dijet data [50],

SM1
hemi(#

+, #−) = θ(#+)θ(#−)
N (a, b)

Λ2

(#+#−

Λ2

)a−1
exp

(−(#+)2 − (#−)2 − 2b#+#−

Λ2

)
. (114)

Here the normalization constant N (a, b) is defined so that
∫

d#+d#−S(#+, #−) = 1, the pa-

rameter Λ ∼ ΛQCD sets the scale for #± and hence the soft radiation, and the parameter

a controls how fast the soft-function vanishes at the origin. The dimensionless parameter

b > −1 controls the correlation of energy flow into the two hemispheres. Any b #= 0 implies

cross-talk between the two hemispheres. A fit to the heavy jet mass distribution using e+e−

dijet data from LEP and SLD with Q = mZ gives [50]

a = 2 , b = −0.4 , Λ = 0.55 GeV , (115)

These values were shown to yield accurate predictions for the heavy jet-mass and C-

parameter event shapes for a wide range of energies, Q = 35–189 GeV [50], as well as

available thrust distributions with Q = 14–161 GeV [29]. We adopt Eq. (115) as the central

values for our analysis, but will also discuss how our predictions vary with changes to these

model parameters.
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Double Differential Invariant Mass Distribution
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FIG. 7: Plot of F (Mt,Mt̄), which is the double differential hemisphere invariant mass cross-section
d2σ/dMtdMt̄ in units of 4σH

0 /Γ2. The observed peak position (intersection of the magenta lines) is
not given by the true top-quark mass, m = mJ = 172GeV (red lines). This peak shift depends on
the energy Q, the width Γ, and the soft-radiation function. The result is shown for Q/mJ = 4.33
and the parameters in Eq. (115).

In Fig. 7 we plot F (Mt, Mt̄) using Eqs. (113-115) and taking Q = 745 GeV. The key

feature to note is that the observed peak position is not given by the short-distance top-

quark mass mJ , but is instead shifted upward by ! 1.5 GeV. The positive sign of this shift

is a prediction of Eq. (111) irrespective of the choice of parameters. The precise value for

this shift depends on Q/mJ , Γ, as well as the parameters of the soft function. A less obvious

feature of Fig. 7 is that the width of the observed peak has also increased beyond the width

Γ of Eq. (113). Physically, the reason for this behavior is that soft radiation contributes to

the invariant masses, while the Breit-Wigner is only a leading order approximation for the

spectrum of the top-quark and accompanying collinear gluons. Thus the arguments of B̃±
in Eq. (111) subtract the dominant soft momentum component from ŝt,t̄. If we approximate

Shemi(!+, !−) as a very narrow Gaussian centered at !± = !±0 , then the observed peak simply

occurs at Mt,t̄ ∼ mJ + Q!±0 /(2mJ). Although this model is too naive, we demonstrate in

the next section that the linear dependence of the peak shift on Q/mJ is in fact generic and

independent of the soft-function parameters. The peak width also increases linearly with

Q/mJ .

The presence of the shift is due to the inclusion of soft radiation in the definition of

the invariant masses Mt and Mt̄. Although we adopted a hemisphere mass definition, the

same type of shift will be present for any jet algorithm that groups all the soft radiation

into the jets identified for the top and anti-decay products, as we discuss in Sec. V. The

numerical analysis performed in this section applies equally well to these situations, though

the appropriate definition and model for the soft functions S for such analyses will in general

be different than that in Eq. (114) with Eq. (115). We are not aware of studies where models
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a) b)

FIG. 5: Tree level top-quark jet functions in a) SCET and b) bHQET. {fig:Bjet}

graphs in Fig. 5 which have a trace over spin and color indices. This gives for Γ = 0 and in

the pole mass scheme

BΓ=0
+ (ŝ) =

−1

4πNcm
(−Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1. Plugging Eq. (87) into Eq. (81), the final form for differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)
(90) {bHQETcross-hem}

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ) ,

where we still have HQ(Q, µ) = |C(Q, µ)|2 and the soft function

Shemi($
+, $−, µ) =

1

Nc

∑

Xs

δ($+ − k+a
s )δ($− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (91)

Note that Eq. (90) depends on two renormalization scales, µm and µ. The matching scale

µm ∼ m was the endpoint of the evolution of the hard function HQ(Q, µm). From the

matching at m we get the dependence on µm in Hm, and from running below m we get

in addition a dependence on µ which cancels against dependence on µ in the bHQET jet

functions and the soft function.

So to sum the remaining large logarithms we have in principle two choices. We can either

run the Wilson coefficient Hm of we run the individual functions B± and S. The first option

essentially corresponds to running the bHQET top pair production current of Eq. (33), and

we will call this method “top-down”. The relation

Hm

(
m,

Q

m
, µm, µ

)
= Hm(m, µm)UHm(µm, µ) (92)

defines the corresponding evolution factor UHm that is shown in Fig. 4. The second option

means running the jet functions B± and the soft function Shemi independently with the

evolution factors UB±(µ, µm) and US(µ, µm) respectively, as is also illustrated in Fig. 4. This

running involves convolutions, such as

µ
d

dµ
B+(ŝ, µ) =

∫
dŝ′ γB+(ŝ− ŝ′) B+(ŝ′, µ) ,

B+(ŝ, µm) =

∫
dŝ′ UB+(ŝ− ŝ′, µm, µ) B+(ŝ′, µ) , (93) {Brun}
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δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1. Plugging Eq. (87) into Eq. (81), the final form for differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q,µm)Hm

(
m,

Q

m
, µm, µ

)
(90) {bHQETcross-hem}

×
∫ ∞

−∞
d$+d$− B+

(
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running involves convolutions, such as
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•Measured peak position is shifted away 
from the short distance mass value due to 
the nonperturbative soft function. 

•Naive Breit Wigner fit not valid even at 
tree level.



NonPerturbative Effects in Single Differential Distribution

• Peak position shifts linearly with the center of mass energy.

• Width of distribution also shifts linearly with center of mass energy.
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FIG. 9: Effect of a change in Q on the invariant mass distribution. Results on the left are generated
from d2σ/dMtdMt̄, a) shows the peak position versus Q/mJ , and b) gives the full width at half-
max versus Q/mJ . In c) we show dσ/dMt in units of 2σH

0 /Γ for different values of Q/mJ . The
curves use mJ = 172GeV, Γ = 1.4GeV, and the parameters in Eq. (115).

greater detail. In Sec. IVC we discuss the implications of our results for fits to determine

the short-distance mass.

B. Analysis of the Peak Shift and Broadening

In this section we analyze the parameter dependence of the peak shift and broadening of

the width, and demonstrate that they have a linear dependence on Q. The main analysis is

carried out assuming that the soft-function model parameters have been determined from

massless jet observables. Near the end of this section we are relaxing this assumption and

test the dependence of the invariant mass distribution on these parameters.

In Fig. 9a we plot the peak location, Mpeak
t , for nine values of Q. Mpeak

t is obtained from

the two-dimensional distribution, and corresponds to the intersection of the magenta lines

in Fig. 7. Since d2σ/dMtdMt̄ is symmetric the value of Mpeak
t̄ is the same. Note that for

Q ! 2mJ where the tops are near threshold, our effective theory expansions do not apply.

The straight blue line in Fig. 9a is a linear fit to the points with Q/mJ ≥ 4, and clearly shows

that the peak location grows linearly with Q. In Fig. 9b we plot the “Peak Width”, defined

as the full-width at half-max of d2σ/dMtdMt̄ in the top-variable Mt, while fixing the antitop

Mt̄ = Mpeak
t̄ . The red solid line is a linear fit for Q/mJ ≥ 4. This figure demonstrates that

we also have linear growth with Q for the width of the measured invariant mass distribution.
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Other Event Shapes



logs) we will call this option “bottom-up”. Because the running of Hm is local (i.e. has no

convolution), this RG evolution only affects the normalization of the cross section and does

not change the dependence on st and st̄ in a non-trivial way. This is more difficult to discern

from the bottom-up running, but when the convolutions for B± and S are combined they

must become local. These cancellations are discussed in detail in Ref. [60] where also the

full leading log evolution is derived.

Generically, we may wish to run the soft function and jet function to slightly different

low energy scales. Lets examine the case shown in Fig. 5 where we run the soft function to

µ∆, but run the bHQET jet functions to a slightly lower scale µΓ. (The opposite case could

of course also be realized.) In this case the running is local up to the scale µ∆, and below

this scale we have convolution running for B±. Using Eq. (102) the factorization formula

for split low energy renormalization scales is

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ∆

)
(103)

×
∫ ∞

−∞
dŝ′t dŝ′t̄ UB+(ŝt−ŝ′t, µ∆, µΓ) UB−(ŝt̄−ŝ′t̄, µ∆, µΓ)

×
∫ ∞

−∞
d"+d"−Shemi("

+, "−, µ∆) B̃+

(
ŝ′t −

Q"+

mJ
, Γ, µΓ

)
B̃−

(
ŝ′t̄ −

Q"−

mJ
, Γ, µΓ

)
,

where parametrically µ∆ ∼ µΓ and here we take mJ = mJ (µΓ). In this paper we will use

common low energy scales for our numerical analysis, Eq. (100), and leave the discussion of

the more general case in Eq. (103) to Ref. [60].

I. Thrust and Other Event Shape Variables

Starting from the two-dimensional distribution, d2σ/dM2
t dM2

t̄ in Eq. (100) it is straight-

forward to derive results for other event shape variables. For example, for the thrust T

defined in Eq. (57), we have 1 − T = (M 2
t + M2

t̄ )/Q2 which follows using Eq. (78) with

Eqs. (1) and (58). Inserting the identity

1 =

∫
dT δ

(
1− T −

M2
t + M2

t̄

Q2

)
(104)

into Eq. (100) and integrating over M 2
t and M2

t̄ we find

dσ

dT
= σH

0 (µ)

∫ ∞

−∞
dst dst̄ B̃+

( st

mJ
, Γ, µ

)
B̃−

( st̄

mJ
, Γ, µ

)
Sthrust

(
1− T − (2m2

J + st + st̄)

Q2
, µ

)
,

(105)
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t̄ in Eq. (100) it is straight-

forward to derive results for other event shape variables. For example, for the thrust T

defined in Eq. (57), we have 1 − T = (M 2
t + M2

t̄ )/Q2 which follows using Eq. (78) with

Eqs. (1) and (58). Inserting the identity

1 =

∫
dT δ

(
1− T −

M2
t + M2

t̄

Q2

)
(104)

into Eq. (100) and integrating over M 2
t and M2

t̄ we find

dσ

dT
= σH

0 (µ)

∫ ∞

−∞
dst dst̄ B̃+

( st

mJ
, Γ, µ

)
B̃−

( st̄

mJ
, Γ, µ

)
Sthrust

(
1− T − (2m2

J + st + st̄)

Q2
, µ

)
,

(105)
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where σH
0 (µ) = σ0HQ(Q, µm)Hm(mJ , Q/mJ , µm, µ). Here the thrust soft-function is simply

a projection of the hemisphere soft function,

Sthrust(τ, µ) =

∫ ∞

0

d#+ d#−δ
(
τ − (#+ + #−)

Q

)
Shemi(#

+, #−, µ) (106)

=
1

Nc

∑

Xs

δ
(
τ − k+a

s + k−b
s

Q

)
〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †

n Y
†
n̄(0)|0〉 .

Another well known distribution, which is also frequently analyzed for massless jets, is

the heavy jet mass. It can be defined by the dimensionless variable

ρ =
1

Q2
Max

{
M2

t , M2
t̄

}
. (107)

Using the same steps as above for ρ, the factorization theorem for top initiated jets is

dσ

dρ
= σH

0 (µ)

∫ ∞

−∞
dst dst̄ B̃+

( st

mJ
, Γ, µ

)
B̃−

( st̄

mJ
, Γ, µ

)
SHJM(ρ − m2

J

Q2
, st, st̄) , (108)

where the relevant soft-function is

SHJM(ρ, st, st̄) =

∫ ∞

0

d#+ d#− δ
(
ρ − 1

Q2
Max

{
Q#++st, Q#−+st̄

})
Shemi(#

+, #−, µ) . (109)

Factorization theorems for other event shapes that are related to d2σ/dM2
t dM2

t̄ can be

derived in an analogous manner. As should be obvious from the definitions of thrust and the

heavy jet mass distribution in Eqs. (105) and (108), these event shape distributions are also

characterized by a peak at shape parameter values that are sensitive to the short-distance

top-quark mass. It is therefore possible to use these event shapes to measure the top-mass

with a precision comparable to the invariant mass distribution discussed in the previous

subsection. A brief numerical analysis of the thrust distribution is given in Sec. IVA.

IV. ANALYSIS OF THE INVARIANT MASS DISTRIBUTION

A. A Simple Leading Order Analysis

The main result of this paper is the formula in Eq. (100) for the double invariant mass

distribution with a short distance top-quark mass suitable for measurements using jets.

In this section we discuss the implications of Eq. (100) for top-mass measurements. For

convenience we rewrite the cross-section in terms of dimension one invariant mass variables

d2σ

dMt dMt̄
=

4MtMt̄ σH
0

(mJΓ)2
F (Mt, Mt̄, µ) , (110)

where σH
0 = σ0HQ(Q, µm)H̃m(mJ , Q/mJ , µm, µ) is the cross-section normalization factor

with radiative corrections, Q is the c.m. energy, and we have defined a dimensionless function

F (Mt, Mt̄, µ) = (mJΓ)2

∫ ∞

−∞
d#+ d#−B̃+

(
ŝt −

Q#+

mJ
, Γ, µ

)
B̃−

(
ŝt̄ −

Q#−

mJ
, Γ, µ

)
Shemi(#

+, #−, µ).

(111)
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FIG. 8: Plot of the thrust distribution, dσ/dT in units of σH
0 , for top-initiated events in the peak

region. We use Q/mJ = 5, mJ = 172GeV and the soft function parameters in Eq. (115).

for such soft functions were discussed.

It is important to emphasize that the shift of the observed peak position away from

mJ is not an artifact of the mass-scheme. At the order used to make Fig. 7 we could set

mJ = mpole since as explained in Sec. IIIG they differ by O(αsΓ).6 In a generic short

distance top-quark jet-mass scheme there is a small shift ∼ αsΓ in the peak position due

to perturbative corrections in the matrix element defining B̃± (as discussed in detail in

Ref. [60]). In Sec. IIIG we defined mJ using a jet-mass scheme which keeps the peak of B̃±
fixed order-by-order in perturbation theory. In this scheme the shift in the peak location

relative to the short-distance mass is entirely due to the non-perturbative soft radiation.

Although mJ is not determined by the peak-position, the shape of the cross-section is

very sensitive to mJ , and hence for precision δmt
<∼ 1 GeV the top-quark mass should be

determined by a fit to F in Eq. (110). In Sec. III I factorization theorems for related event

shape variables were derived, including thrust dσ/dT , and the heavy-jet mass dσ/dρ. These

event shapes also exhibit a peak. They are sensitive to the top-quark mass parameter mJ ,

and can be used for top-mass measurements. As an example, in Fig. 8 we plot dσ/dT

using Q/mJ = 5, mJ = 172 GeV, and the parameters in Eq. (115). The expected peak

in the thrust distribution is at 1 − T # 2m2/Q2 = 0.08, and is shifted to the right by

∆(1−T ) = 1.3× 10−3 by the soft-radiation. Again the direction of the shift is a prediction,

but the precise amount of the shift depends on the soft-model parameters in Eq. (115)

as well as Q/mJ . An analysis of any other event shape distributions that are related to

d2σ/dM2
t dM2

t̄ can be made in a similar fashion.

In Sec. IVB we explore the functional dependence of the peak shift for d2σ/dMtdMt̄ in

6 In general use of mpole is not a good idea, since in fits it would induce an unphysical change in the required
parameters a, b, Λ order-by-order in perturbation theory
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Thrust Distribution

•The thrust variable is related to the jet invariant masses as:

•Using the above relation  one can obtain the thrust distribution:

•The thrust soft function is related to the hemisphere 
soft function as:



• We have developed an analytic framework that gives a clear and well defined 
relation between the short distance top mass and reconstruction from jets:

Conclusions

•We define a new short distance mass suitable for reconstruction from jets.
•Peak position is shifted away from the short distance top mass value by universal nonperturbative effects.
•The shift is linear in the center of mass energy.
•The width of the distribution also grows linearly with energy. 
•Large logarithms only affect the overall normalization of the distribution.

• EFT approach allows for factorization, power corrections, resummation, and 
universal characterization of non-perturbative effects. 

•One can generalize this approach for different jet algorithms especially those suited 
for the LHC and work is in progress.


